Search published articles


Showing 2 results for Equal Channel Angular Pressing

R. Jahadi Naeini, M. Sedighi, H. R. Jahedmotlagh,
Volume 33, Issue 3 (3-2015)
Abstract

In this paper, the effect of Equal Channel Angular Pressing (ECAP) process on the structure and mechanical properties of AM30 magnesium alloy was studied. The results showed a considerable effect of ECAP process on creating an ultrafine grain size structure. Scanning Electron Microscope indicated that the grain size dropped from 20.4 µm in the extruded form to 7.2 µm in the first pass and 3.9 µm in fourth pass. The fourth pass presented higher ductility and lower yield stress in comparison with the extruded case. This behavior can be explained based on higher rate of texture softening versus the effects of the grain refinement on strength. The hardness test on the samples cross-section showed an increase in hardness and a uniform strain distribution at higher ECAP passes.
S. E. Mousavi, M. Meratian, A. Rezaeian,
Volume 36, Issue 4 (3-2018)
Abstract

Equal Channel Angular Pressing (ECAP) is currently one of the most popular methods for fabricating Ultra-Fine Grained (UFG) materials. In this study, mechanical properties of the 60-40 two phase brass processed were evaluated by ECAP. The samples were repeatedly ECAP-ed to strains as high as 2 at a temperature of 350 ◦C using route C. The microstructure of the samples showed that small grains were formed in the boundaries which indicates the occurrence of recrystallization in different passes. Observation of slip trace in the microstructure of the samples showed that even in such alloy with a low-stacking fault energy, dislocations slip trigger the deformation. Investigation of mechanical properties showed that with increasing the number of passes, tensile strength, microhardness and ducility improved at the same time.
 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb