Search published articles


Showing 2 results for Finite Element Simulation

H. Shokrvash, A. Vajd, M. Shaban Ghazani,
Volume 34, Issue 4 (3-2016)
Abstract

In the present research, an effective thermo-mechanical processing route in the temperature range of metastable austenite region (Ae3<T< Ar3) was employed to achieve ultra-fine grain size in a plain low carbon steel during integrated extrusion equal channel angular pressing. At first, the effect of preheating temperature on the strain and temperature distributions inside the deformed samples were investigated using 3D finite element simulation. According to the result of FEM simulation, the preheating temperature of 930 ˚C was selected as an appropriate temperature for fabrication of ultra-fine ferrite structure. Severe plastic deformation was then imposed on samples with the predicted preheating temperature and the results showed a great consistency with FEM simulation predictions. Optical micrographs taken from the center point of the  samples showed that the ferrite grains could be refined from 32 &mu;m to 1-3 &mu;m by different mechanisms.


M. H. Musazadeh, R. Vafaei, E. Mohammad Sharifi, Kh. Farmanesh,
Volume 38, Issue 3 (12-2019)
Abstract

Finite element (FE) simulations in conjunction with experimental analysis were carried out to characterize the deformation behavior of an AISI 321 austenitic stainless steel (ASS) during cold pilgering process. The effect of process parameters including feed rate (4 and 8 mm) and turn angle (15, 30 and 60°) on damage build-up were also evaluated. The Johnson-cook model was used to simulate the flow behavior of material. By considering compressive stresses, a new revised Latham-Cockcraft damage was calculated and used to determine the optimum process parameters. It was found that the radial and hoop strains in all friction conditions were compressive, while the axial strains were observed to be tensile. The amount of strain (whether it is compressive or tensile strain) was also higher on the outside of the tube compared to its inside. By considering fatigue cycles of a tube element during the process, the feed rate of 8mm, turn angle of 60° and the lowest coefficient of friction were determined as optimum parameters.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb