Search published articles


Showing 2 results for Fuel Cell.

M. R. Pakmanesh, M. Shamanian, S. Asghari,
Volume 36, Issue 4 (3-2018)
Abstract

In the present study, the optimization of pulsed Nd:YAG laser welding parameters was done on a lap-joint of a 316L stainless steel foil in order to predict the weld geometry through response surface methodology. For this purpose, the effects of laser power, pulse duration, and frequency were investigated. By presenting a second-order polynomial, the above-mentioned statistical method was managed to be well employed to evaluate the effect of welding parameters on weld width. The results showed that the weld width at the upper, middle and lower surfaces of weld cross section increases by increasing pulse durationand laser power; however, the effects of these parameters on the mentioned levels are different. The effect of pulse duration in the models of weld upper, middle and lower widths was calculated as 76, 73 and 68%, respectively. Moreover, the effect of power on theses widths was determined as 18, 24 and 28%, respectively. Finally, by superimposing these models, optimum conditions were obtained to attain a full penetration weld and the weld with no defects.

H. Ebrahimifar, M. Zandrahimi, F. Ekhlaspour,
Volume 38, Issue 3 (12-2019)
Abstract

One of the most effective ways to improve oxidation resistance of interconnects used in solid oxide fuel cells (SOFCs) is to apply a layer of conductive protective coating. In this study, Crofer 22APU ferritic steel was coated in a titanium- based powder mixture by pack cementation method. The powder composition for titanium coating was Ti 20 wt.%, NH4Cl 5 wt.% (activator) and Al2O3 75 wt.%. The optimum temperature and time to obtain the best coating quality in terms of adhesion and porosity were 800 °C and 7 hours, respectivly. The obtained titanized coating consisted of TiFe, TiFe2 and TiCr2 phases. The results of isothermal and cyclic oxidation tests carried out at 900 °C, showed that titanium-coated samples had better oxidation resistance than non-coated samples. Microstructural and phase studies of coated and oxidized samples were performed by scanning electron macroscopy (SEM) and X-ray diffraction analysis (XRD). During oxidation process, the coating layer was converted into TiFe, TiFe2, TiFe2O5, TiO2 and TiCr2O4 phases. The coated specimens had lower weight gains relative to uncoated samples showing that coating effectively protects the substrate against oxidation. Moreover, coated samples had higher electrical resistance than uncoated ones.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb