Search published articles


Showing 110 results for Ge

B. Mirzaeian, M. Moallem, V. Tahani and Caro Lucas,
Volume 20, Issue 1 (7-2001)
Abstract

In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplied by Current-Source-Inverter (CSI). Step response of the system is considered and controller parameters are designed based on multi-objective optimization technique. Rise-time, maximum over-shoot, settling time and steady state error are considered as objective functions. The simulation results of the new method for induction motor speed control and optimization of two nonlinear mathematical functions are compared with the results obtained from other methods [4,14,15], which shows better performance.
S. A. Shojaosadati and A. Seifi,
Volume 20, Issue 1 (7-2001)
Abstract

In order to evaluate the performance of biofilter for H2S removal from contaminated air, a 120×14 cm column biofilter was constructed using clear polyacrylic material in conjunction with H2S production and control systems. The column was divided into four stages using perforated plates. The column was packed with a mixture of mushroom compost and snail shell (4:1). The performance of biofilter was evaluated during 4 months of operation under various flow rates and H2S concentrations in ambient temperature. According to the results, the removal effeciency of H2S in polluted air for concentrations of up to 150 ppm, average temperature of 26.9°C and under flow rates of 6 and 12 l.min-1 was more than 95% the results for average temperature of 20.5°C and the flow rates of 19.5 and 26 l.min-1 but constant H2S concentration was more than 85%. The maximum removal rate (Vm) was measured as 0.075 g S/kg-dry compost.h and average saturation constant (Ks) was 32.5 ppm
A. Rezvani, G. Karami and M. Yaghoubi,
Volume 20, Issue 1 (7-2001)
Abstract

One of the great enemies of rubber compounds is heat. Heat will cause chemical and physical degradation of vulcanized rubber as well as a considerable loss in its strength. A major source of heat generation in a tire is due to internal friction resulting from the viscoelastic deformation of the tire as it rolls along the road. Another source of heat generation in a tire is due to its contact friction with the road. Prediction of the temperature rise at different parts of the tire will help to detect the behavior of the tire as regards its strength and its failure. In the present work, initially the data required for the thermal analysis of the tire are determined which include: the thermal conductivity of rubber compounds, the tire rolling resistance and its heat build-up rate. The thermomechanical analysis of a typical tire then follows based on the thermodynamics of an irriversible process. The mechanical dissipatives, i.e. the hystersis losses are assummed to be the major source of heat in the mathematical formulation. A finite element code is developed for two-dimensional heat transfer analysis of the tire. The results obtained show that the highest temperature rise will occur on the carcass-tread interface in a tire specially at heavy loading and under high speed conditions. Keywords: Heat Generation, Rubber, Contact Friction, Design, Finite Element, Viscoelastic Deformation
M.e. Hamedani Golshan, H. Ghoudjehbaklou and H. Seifi,
Volume 20, Issue 2 (4-2001)
Abstract

Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determined by a sufficiently rapid and precise method. In this paper, a new algorithm based on assigning a vector to each power system bus is presented. These vectors indicate buses conditions from the viewpoint of voltage stability. In this new method, using the clustering methods such as kohonen neural network, fuzzy C-Means algorithm and fuzzy kohonen algorithm, voltage control areas are determined The proposed method has advantages such as determining PV and PQ buses which belong to the weak area simultanously, under all operating conditions and without a need to system model. Also by comparing the results of applying clustering methods, it has been observed that, due to simplicity of implementation and precision of the results, the two dimensional kohonen neural network is a more suitable tool for clustering power system to voltage control areas than the fuzzy C-Means and fuzzy kohonen methods. Keywords: Voltage stability, Voltage weak area, Voltage control area, Corrective control, Pattern recognition, Kohonen neural network, Fuzzy C-Means algorithm, Fuzzy Kohonen algorithm.
M. R. Soltani and A. R. Davari,
Volume 20, Issue 2 (4-2001)
Abstract

A wind tunnel investigation was performed to study the flow field over a 70° swept sharped edge delta wing model at high angles of attack. The experiments were conducted in the subsonic wind tunnel at the Department of Mechanical Engineering, Sharif University of Technology. Velocity profiles have been measured using a special pitot tube and hot wire anemometer at angles of attacks of 10 to 35 degrees and Reynolds numbers between 1.5 to 5´105 over half and a full model. From these studies the shape of the leading edge vortices as well as the turbulence intensity inside the vortices were obtained and analyzed. This study revealed a region of increased velocity highly tubulent flow at the vortex core. As a result, the lift will increase nonlinearly with angle of attack. Keywords: Leading edge vortex, Turbulence Intensity, Delta Wing, Vortex Bursting, Vortex core
G. A. Barani, M. J. Khanjani and J. Ahmad- Auli,
Volume 20, Issue 2 (4-2001)
Abstract

In recent years, installation of plates in canal beds have been considered for sedimentation control and bed load reduction at canal intake. These planes, called submerged vanes, are different in dimensions. They are installed at intakes in-group with reasonable distance from each other. Presence of these vanes at intakes initiate transverse shear stress on river bed and causes sediment transport in the transverse direction. Investigation of flow and sediment transport equations, along with different experiments on physical models, have resulted in a suitable range of sizes and distances for vane installation. But, the determination of optimum sizes and distances for vane installation so as to minimize sedimentation requires the use of optimization techniques. In this study, the hydrodynamic and optimization models of the vane system are first introduced. As the flow and sediment transport governing equations at intakes was nonlinear, the feasible direction method is used. Optimum size of vanes, distances between them at longitudinal and transverse directions, and the angle of flow inclination have also been determined. The optimum quantities of vane parameters were used to calculate the river bed profile at intakes by Wang et. al. [1] procedure. Comparison of the obtained results with Wang el. al. [1] recommendations confirms the advantage of vanes instalation at optimum conditions to control sedimentation. Keywords: Submerged Vanes, Feasible Direction, Intake and Sedimentation
R. Keypour, H. Seifi, A. Yazdian,
Volume 21, Issue 1 (7-2002)
Abstract

In this paper, two algorithms have been developed for allocation and size determination of Active Power Filters (APF) in power systems. In the first algorithm, the objective is to minimize harmonic voltage distortion. The objective in the second algorithm is to minimize the new APF injection currents while satisfying harmonic standards. Genetic algorithm is proposed for these two optimization problems. The simulation results for an 18-bus system show the effectiveness of the genetic algorithm for these two optimization problems. Keywords: Genetic Algorithm, Active Power Filter, Harmonics, Allocation, Optimization
D. Mostofinejad and M.davoodnabi,
Volume 21, Issue 1 (7-2002)
Abstract

In most cases, structural engineers assume a concrete floor to be a rigid diaphragm. Although this simplification is in most cases acceptable, it should be noted that such an assumption may be distrusted due to certain problems. Concrete structures with staggered shear walls are among those whose analysis should be conducted with special concern for the behavior of their floor diaphragms. However, in the structures with staggered shear walls, the horizontal shear due to lateral loads is transmitted to the lower stories through the floor diaphragm since the walls are not usually located over each other in consecutive stories. Therefore, the rigidity of the floor diaphragm is of great importance. In the present study, a parametric analysis was performed to investigate the effect of the rigidity of the floor diaphragm on the load-carrying procedure of the structures with staggered shear walls. The investigated parameters were the number of stories, the ratio of length to width of the plan, and the thickness of walls and diaphragms. Furthermore, the study was carried out for both rectangular and I-shaped plans. All analyses were dynamically performed by ANSYS 5.4 using acceleration spectrum recommended by Iranian Building Code Standard No. 2800. Finally, the behavior of these structures and comparison of the frequencies, the maximum lateral displacements and the shear in the walls and columns as the responses of rigid and flexible diaphragms were highlighted and outlined. Keywords: Reinforced concrete, staggered shear wall, load carrying, floor diaphragm, rigidity.
Gh. Yousefi, H.seifi and M. S. Ghazi-Zadeh,
Volume 21, Issue 1 (7-2002)
Abstract

In a de-regulated open access environment, reactive power is one of the ancillary services which must be provided by an Independent System Operator (ISO). In this paper, a new algorithm is proposed in which reactive power resources are initially so tuned that optimum security in terms of voltage profile and voltage stability are achieved while at the same time, the system losses are minimized. The resulting optimization case is solved as an Extended Multi-objective Optimal Power Flow (EMOPF) problem using Lexico Graphic Method (LGM). Thereafter, using the concept of Fair Resource Allocation (FRA), the reactive powers generated are distributed among existing transactions so that the costs incurred are properly and fairly recovered. The algorithm is successfully tested on a typical power system. Keywords: Reactive Power, Reactive Power Management, Reactive Power Pricing, Voltage Profile, Voltage Stability, Deregulated Environment, Open Access
A. N. Mashayekhi and B. Arbabshiriani,
Volume 21, Issue 2 (1-2003)
Abstract

Knowledge is one of the most important organizations' assets. To manage knowledge effectively, it is necessary to be able to measure knowledge. There are few methods for knowledge measurement with certain limitations. One important weakness of current methods is their insufficient attention to definition, dimensions and attributes of knowledge. In this paper, we propose a new method for measuring the level of an engineering organization's knowledge. According to our proposed method, the level of an organization's knowledge is a function of both "knowledge hierarchy" and "knowledge dimensions". The method is applied to an engineering organization to measure the level of knowledge at two different times and the results are presented. Keywords: Knowledge, Knowledge management, Knowledge measurement, Knowledge hierarchy, Knowledge dimensions
A. Shams Nateri, S. H. Amirshahi and M. Latefi,
Volume 21, Issue 2 (1-2003)
Abstract

In the present work the reflection behavior and the color appearance of acrylic yarns, as pile yarns used in carpet and pilled fabrics, are considered along their lengths as well as their cross- sections. Differences between longitudinal and cross-sectional reflection behaviors of yarns are measured in different yarn densities and hues and explained by the geometric model. The results of experimental work show that the average of reflectance and lightness values along yarns' length, with identical hue, are higher than values obtained from their cross-section. Besides, the lightness values of cross-sectional of samples, with identical hue, increase when the density of yarns in holder cell increases. The metric chromas as well as the hue angles of samples, dyed with the same dyestuff are different in two directions and lead to color difference values between 3.35 and 27.84 under D65 Illumination and CIE 1964 standard observer in CIELAB color difference formula. The reflection differences between two directions are analyzed using the geometric model and it is found that they originated from different optical passes through the fibers in the mentioned modes. Keywords: Reflection behavior, Geometric model, Acrylic yarn
J. Soltani and F. Katiraei,
Volume 22, Issue 1 (7-2003)
Abstract

In this paper, using a personal computer (PC), the practical implementation of scalar and vector control methods on a three–phase rotor surface- type permanent magnet synchronous machine drive is discussed. Based on the machine dynamic equations and the above control strategies, two block diagrams are presented first for closed-loop speed controlling of the machine drive/system. Then, the design and implementation of hardware circuits for power, insulating, and signal matching stages are explained along with a description of the written software program for the servo drive system control. These circuits are used to produce the drive inverter switching pulses. To supply the machine drive, the sinusoidal, uniform sampling and step-trapezoidal PWM voltage source inverters are examined. For closed loop speed control of the drive system, the stator currents and rotor speed signals (in scalar control method only the rotor speed) are sampled on-line. After filtering, buffering and matching operations, these signals are transferred to a personal computer port via a high frequency sampling and high resolution A/D converter. It is worth mensioning that both methods of controlling mathematical calculations is done by computer. Finally, the practical and computer simulation results obtained are demonstrated. Keywords: Machine Drive, Synchronous Machine, Permanent Magnet, Rotor Surface Type, Scalar and Vector Control, Voltage – Source Inverter, Control by PC.
F. Torkamani Azar and M. Zanjani,
Volume 22, Issue 1 (7-2003)
Abstract

Recently, image processing technique and robotic vision are widely applied in fault detection of industrial products as well as document reading. In order to compare the captured images from the target, it is necessary to prepare a perfect image, then matching should be applied. A preprocessing must therefore, be done to correct the samples’ and or camera’s movement which can occur during the capturing of images. The Radon Transform technique is applied in this study which is inherently invariant to any movement, such as dislocation and rotation which leads to scale changing. According to this technique, simple methods are proposed to determine the degree of movement. Results of computer simulation show the priority of the proposed method to other techniques. The accuracy of the proposed algorithm is less than 0.1 degree and is applicable to different segments such as texts, tables, drawings, …, which are prepared in different writing languages by different devices such as digital camera, scanner, fax, and printer. Keywords: Image processing, Image matching, Radon Transform, Skew detection documents, Computer application in industry.
H. Deldari, T. Ghafarian,
Volume 22, Issue 2 (1-2004)
Abstract

Algorithmic skeleton has received attention as an efficient method of parallel programming in recent years. Using the method, the programmer can implement parallel programs easily. In this study, a set of efficient algorithmic skeletons is introduced for use in implementing parallel genetic algorithm (PGA).A performance modelis derived for each skeleton that makes the comparison of skeletons possible in order to select the best one for the application. The performance of the selected skeleton can be increased by specifying the virtual topology required by the appliation.This is a novel approach with no precedent. Nesting of skeletons used hereis another novelty of the study which has been employed only in few previous studies.
R. Mozaffarinia, F. Ashrafizadeh, M. A. Golozar,
Volume 22, Issue 2 (1-2004)
Abstract

The purpose of this work was to production of ceramic thin films by using of Sol-Gel process. For this purpose deposition of SiO2 on substrates of soda-lime glasses has been carried out. Coating treatments on prepared specimen were conducted in a Sol solution by means of dipping at various times. After drying and performing appropriate heat treatment on each sample, the thickness of coated layer was measured by means of roughness method. Some of the specimens were also exposed to heat and chemical environment to evaluate the coating resistance in such media. SEM examination and EDAX and XRD analysis of coating layers was also conducted on some samples. The results indicated that by Sol-Gel method, it is easily possible to achieve thin layers in the scale of one hundredth micron meter. Any change of the thickness layer on the surface is negligible and the quality of the coating is excellent. Also, experiments indicated that deposited coatings by Sol-Gel process, are stable and give enough durability in various environments.
G. Ghassem-Sani and M. Namazi,
Volume 23, Issue 1 (7-2004)
Abstract

Many important problems in Artificial Intelligence can be defined as Constraint Satisfaction Problems (CSP). These types of problems are defined by a limited set of variables, each having a limited domain and a number of Constraints on the values of those variables (these problems are also called Consistent Labeling Problems (CLP), in which “Labeling" means assigning a value to a variable.) Solution to these problems is a set of unique values for variables such that all the problem constraints are satisfied. Several search algorithms have been proposed for solving these problems, some of which reduce the need for backtracking by doing some sort of looking to future, and produce more efficient solutions. These are the so-called Forward Checking (FC), Partially Lookahead (PL), and Fully Lookahead (FL) algorithms. They are different in terms of the amount of looking to the future, number of backtracks that are performed, and the quality of the solution that they find. In this paper, we propose a new search algorithm we call Modified Fully Lookahead (MFL) which is Shown to be more efficient than the original Fully Lookahead algorithm
A. R. Bakhshai, H. R. Saligheh Rad and M. Saeedifard, ,
Volume 23, Issue 1 (7-2004)
Abstract

Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is its complex and time-consuming computations in real-time implementation. The time-consuming calculation as well as software and hardware complexities of the network grow dramatically as the number of inverter levels increases. Therefore, it is necessary to develop an exact, fast, and general computation SVM algorithm for multi-level converters. This paper introduces such an algorithm. Specifically, the SVM computation algorithm based on a vector classification technique, introduced for 2-level inverters in 1996, is developed and generalized to be applicable in determining the switching sequences and calculating the switching instants in m-level inverters. The proposed technique reduces hardware and software complexities, decreases the computation time, and increases the accuracy of the positioning of the switching instants when compared with the conventional implementation of the SVM in multi-level converters
R. Naghdabadi and A. Saeedi,
Volume 23, Issue 1 (7-2004)
Abstract

In this paper, an elastic constitutive model based on the Eulerian corotational rate of the logarithmic strain tensor is proposed. Using this model, the large deformation of a closed cycle containing tension, shear, compression and inverse shear is analyzed. Since the deformation path includes a closed cycle and the material is considered as an isotropic elastic material, the normal and shear components of the stress at the end of the cycle must vanish. Using conventional constitutive models, the non-zero solution for the stress components is obtained. Using the proposed constitutive model, the normal and shear components of stress at the end of the cycle are obtained to be exactly equal to zero.
M. Eidiani, M. H. Modir Shanechi and E. Vaahedi,
Volume 23, Issue 2 (1-2005)
Abstract

Methods for calculating Available Transfer Capability (ATC) of the transmission systems may be grouped under Static and Dynamic methods. This paper presents a fast dynamic method for ATC calculations, which considers both Transient Stability Limits and Voltage Stability Limits as terminating criteria. A variation of Energy Function Method is used to determine the transient stability limit and the determinant of the Jacobian matrix of the system is used as an index to determine the voltage stability limit. A novel method is used to approximately calculate this determinant. Combining these two methods, an algorithm that calculates ATC, based on both voltage and angle dynamic stability is presented. The advantage of this algorithm, besides considering both voltage and angle dynamic stability, is its high speed. This speed of calculation makes the algorithm a perfect candidate to be used in screening contingencies and to determine those cases that need to be further analyzed. To demonstrate the validity, efficiency, and the speed of the new method, it is employed in the calculation of ATC for numerical examples with 2, 3, 7 (CIGREE), 10, 30 (IEEE) and 145 (Iowa State) buses.
H. Farzanehfard, S. R. Motahari and M.m. Tavasoulkhamseh,
Volume 23, Issue 2 (1-2005)
Abstract

One of the difficulties with PWM switching converters is high switching loss and electromagnetic interference due to switching at non-zero voltage and current, which limits the operating frequency. In order to reduce the converter volume and weight (by increasing the frequency) and reducing switching losses, zero voltage and current switching methods are recommended. In this paper, four main zero voltage switching (ZVS) methods in full bridge converters are introduced and compared. These four methods are compared on dead times required to obtain the ZVS, load range at ZVS condition, circulating energy in the switch anti parallel diodes during freewheeling periods and voltage oscillations on rectifying diodes. Finally, the results of a 3 KW prototype full bridge ZVS converter with a clamp circuit for rectifier diodes oscillations are presented and analyzed

Page 1 from 6    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb