Search published articles


Showing 2 results for Heat Transfer

A. Nouri, and M. Nili-Ahmadabadi,
Volume 26, Issue 1 (7-2007)
Abstract

In this article, turbulent flow heat transfer in the air gap between rotor and stator of a generator under nonhomogeneous heat flux is studied experimentally. The rotor consists of four symmetrical triangular grooves. The stator surface is smooth and does not include any grooves. The relative heat flux between the rotor and the stator is 1 to 3. Temperature and heat flux are measured locally at three axial and two angular positions of inner and outer surface. The pressure drop of air flow through the air gap is also measured. In this work, the axial Reynolds number and rotational velocity of the rotor ranges are 4000
M. Kahrom, A. Farahbode, and D. Khodadadzadeh,
Volume 27, Issue 1 (7-2008)
Abstract

A rectangular rod is placed in a flow field flowing parallel to a flat plate. Effect of chord-thickness ratio of rectangular rod on developing vortex shedding downstream to the rod is studied. Then, for each one of the aspect ratios, the distance of the rod from the neighboring flat plate is reduced until the rod sticks to the flat plate. In each case, the effect of the flat plate boundary layer on Strouhal number and the contrary effect of the boundary layer on vortex shedding from the rectangular rod are studied. Results show that as the rectangular rod enters into the flat plate boundary layer, vortex generation from the closest side of the rod reduces, thereby reducing the Strouhal number as well. Finally, when the rectangular rod sticks to the flat plate, a stationary wake forms downstream the rod and sticks to the flat plate. Meanwhile, the boundary layer over the flat plate is disturbed effectively and heat transfer coefficient from the flat plate is enhanced by an average of 50% and up to 200% in some places, locally.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb