Showing 4 results for Kinetics
A. Rasooli, H. R. Shahverdi, M. Divandari, M. A. Boutorabi,
Volume 29, Issue 1 (6-2010)
Abstract
In this research, the reaction kinetics of TiH2 powder in contact with pure aluminum melt at various temperatures on the basis of measuring the released hydrogen gas pressure was studied. To determine the mechanism the reaction, after Solidification of samples, interface of TiH2 powder in contact with melt was studied. The results showed that PH2-time curves had three regions. In the first and second regions, the rate of reaction conforms to zero and first order, respectively. In the third region, hydrogen gas pressure remains constant and the rate of reaction becomes zero order. In the first and second regions, the main factors controlling the rate of reaction are diffusion of hydrogen atoms within titanium lattice and chemical reaction of titanium with aluminum melt, respectively. Based on the main factors controlling the rate of reaction, three temperature ranges can be considered for reaction mechanism, a) 700-750ºC, b) 750-800ºC and c) 800-1000ºC. In the temperature range (a), the reaction is mostly chemical reaction control. In the temperature range (b), the reaction is diffusion and chemical reaction control, and in the temperature range (c), the reaction is mostly diffusion control.
A. Rasooli, M. Divandari, H. R. Shahverdi, M. A. Boutorabi,
Volume 30, Issue 1 (6-2011)
Abstract
In this research, DTA and TGA curves of titanium hydride powder in air with the heating rates of 5, 10, 20, 25, 30ºC/min were drawn, and XRD patterns of titanium hydride powder during heating rate 10ºC/min were prepared. Results showed that hydrogen comes out of titanium hydride in air during seven stages. And, by increasing heating rate, the mechanism of hydrogen emission from titanium hydride is almost fixed. Upon computation of activation energy of these stages, it was revealed that the mechanism does change at different temperatures. According to DTA curve at 10ºC/min, at temperatures lower than 460ºC, the mechanism is controlled by internal diffusion, at temperatures between 460-650ºC, it is controlled by physicochemical process, and at temperatures higher than 650ºC, it is controlled by chemical reaction. By increasing heating rate, the mechanism is changed at higher temperatures.
K. Sheybani, M.h. Abbasi, M. Shamanian ,
Volume 33, Issue 2 (3-2015)
Abstract
in this research, the kinetics of carbothermic reduction of molybdenite in the presence of sodium carbonate was studied. For this purpose, mixed powder of molybdenite, graphite, and sodium carbonate with 1:4:2 mole ratio was investigated using simultaneous thermal analysis (STA) at the heating rates of 10, 15 and 20 0C /min. The results of thermal analysis were evaluated through Friedman, Kissinger, Ozawa and Coats-Redfern methods. The activation energy of reduction reaction was determined 220 kj/mole, and it was found that the reaction was chemically controlled. To study the reaction mechanism, the mixed powder was heated to 400, 800 and 1100 0C in argon atmosphere at the heating rate of 10 0C/min. X- Ray diffraction
of the reaction products and thermodynamic analysis at these temperatures indicated that carbothermic reduction of molybdenite in the presence of sodium carbonate would advance through the formation of intermediate phases, Na2MoO4 and MoO2
B. Pourbahari, H. Mirzadeh, M. Emamy,
Volume 37, Issue 4 (3-2019)
Abstract
Microstructural evolutions during the high-temperature annealing of Mg alloys containing Al and Gd and after the extrusion process were evaluated and compared to those of the AZ61 alloy. It was revealed that during exposure at the elevated temperatures, the presence of (Mg,Al)3Gd phase, in the form of fine and dispersed particles in the matrix after the extrusion process, could be favorable for the inhibition of grain growth. It was also found that the Al2Gd particles could not effectively retard the coarsening of grains. On the other hand, the grain growth of AZ61 alloy was found to be problematic, which was related to the dissolution of the Mg17Al12 intermetallic phase at temperatures higher than 300°C. In the Mg alloys containing both Al and Gd elements, the increased thermal stability was observed, which was ascribed to the rise of the melting temperature. Finally, some abnormal grain growth was observed in the presence of Al2Gd phase, which was attributed to the nonuniform pinning of grain boundaries by this intermetallic compound.