Search published articles


Showing 3 results for Magnetic Nanoparticles

R. Nayerhoda, F. Asjadi, P. Seifi, M. Salimi,
Volume 34, Issue 1 (5-2015)
Abstract

In the present investigation, spherical nanoparticles of nickel ferrite with uniform structure were successfully produced by hydrothermal method in the presence of polyethylene glycol (PEG) as a polymeric surfactant at 180°C for 12 hour aging time and the effects of the synthesis time, temperature and surfactant were investigated. According to the X-ray analysis, conversion of nickel oxide and hematite to nickel ferrite was a way to produce NiFe2O4. At 140‌°C, agglomerated particles without specific shape were formed, but at 180°C particles were homogenous with spherical shape. Saturation magnetization increased by increasing the hydrothermal process aging time.


A. Rostamnejadi, M. K. Esmaeilzadeh,
Volume 36, Issue 3 (11-2017)
Abstract

In this research, nanoparticles of La0.8Sr0.2MnO3 with mean crystallite size of 20 nm have been prepared by sol gel method. The sample has been characterized by X-Ray Diffraction (XRD) using Rietveld refinement, Field Emission Scanning Electron Microscope (FESEM) and Fourier Transform Infrared (FTIR) spectroscopy. The static magnetic properties such as saturation magnetization, effective magnetic moment and ferromagnetic phase fraction of the nanoparticles are determined by different techniques using magnetic hysteresis loop at room temperature. The magnetic dynamic properties of crystalls are studied by measuring AC magnetic susceptibility versus temperature at different frequencies. Néel-Brown, Vogel-Fulcher, critical slowing down models and empirical parameters are used to distinguish between superparamagnetic and superspin glass behaviour in the nanoaprticles. By fitting the experimental data with the models, relaxation time, critical view, magnetic anisotropy energy and effective magnetic anisotropy constant have been estimated. The obtained results support the presence of interacting superparamagnetic behaviour between magnetic nanoparticles of La0.8Sr0.2MnO3.
 


A. H. Kianfar, N. Eskandari, M. A. Arayesh,
Volume 39, Issue 2 (8-2020)
Abstract

In this research the synthesis of [Co(Salen)(PPh3)(H2O)]4[Fe(CN)6] and [Co(Salophen)(PPh3)(H2O)]4[Fe(CN)6] schiff base complexes was reported. Co3O4/CoFe2O4 magnetic nanoparticles were prepared by calcination of these complexes at 500, 550 and 600°C. Precursor complexes were identified by FT-IR and UV-Vis spectroscopy and their thermal behavior was studied via TG/DTA. Nanomagnetic samples were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FT-IR). Magnetic properties of the synthesized nanoparticles were studied using Vibrating Sample Magnetometer (VSM). Magnetic parameters such as saturation magnetization (Ms), remanent magnetization (Mr), coercive field (Hc) and squareness ratio (SQ = Mr/Ms) were determined at room temperature. Stoichiometry and approximate composition of the prepared samples were studied by Electron Diffraction X-ray spectroscopy (EDX). The prepared nanocomposites could be useful in some practical applications due to their high magnetization, good chemical stability and dispersion.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb