Search published articles


Showing 2 results for Martensite

R. Taherian, A. Najafi Zadeh, M. Shamanian, R. Shateri,
Volume 25, Issue 1 (7-2006)
Abstract

In this study, two CCCT diagrams are drawn to be compared with a CCT diagram. The CCCT diagrams represent continuous cooling transformations in stress assisted state. The increased Md and Bd temperatures of CCCT diagrams were also compared with those of the CCT diagrams and the cause was investigated from both thermodynamic and metallurgical viewpoints. Thermodynamic examinations revealed that stress causes the mechanical driving force to increase but the total free energy of transformation to decrease hence, Md and Bd will rise. Metallurgical investigations showed that if deformation temperatures are selected in a manner to increase the structural strength of the original austenite grains prior to deformation, the shear force required for martensite and bainite transformations will arduously obtain hence, Md and Bd will fall. However, if recrystallization or full recovery occurs during or after deformation, interior grain structure softens and the shear force required for martensite and bainite transformations will readily obtain hence, Md and Bd will rise. It was also found that the nose in CCCT curves are shifted to the left as compared to that of CCT curves. This indicates that deformation of steel enhances bainite formation more readily than that of the martensite phase.
A. Shirali, A. Honarbakhsh Raouf , S. Bazzaz Bonabi,
Volume 34, Issue 2 (7-2015)
Abstract

Certain amount of retained austenite can increase ductility of steels because of the TRIP phenomenon during plastic deformation. One method for achieving this is partitioning of carbon into austenite to stabilize it at room temperature. The quenching and partitioning (Q&P) heat treatment leads to a microstructure consisting of martensite and stabilized retained austenite between martensite plates, which provides a better combination of strength and ductility. In this study, the effect of parameters of Q&P process (quenching temperature, partitioning temperature and partitioning time) on the microstructure and retained austenite volume fraction of a low alloy medium carbon steel was investigated. The results showed that the high increase in partitioning time causes the disappearance of martensite blades and reduction of austenite volume fraction. However, increasing of partitioning temperature made the retained austenite films become thicker and its volume fraction increase. On the other hand, by increasing the quenching temperature, carbon content of retained austenite increased sharply.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb