Search published articles


Showing 2 results for Microwave

P. Radmehr, A. Zakeri, S. Alamolhoda,
Volume 34, Issue 4 (3-2016)
Abstract

In this research, TiAl/Al2O3 composite was synthesized from mechanically activated TiO2-Al powder mixtures using microwave heating.The initial powder mixtures were mechanically activated and pressed into cylindrical tablets and then heated in a microwave oven. The effect of different amounts of excess Al and microwave susceptor material (SiC or graphite) on the ignition time and the resultant reaction products were evaluated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were used for characterization of the synthesized samples. XRD patterns revealed that when there was no excess Al in the initial powder mixture, the main resulting intermetallic phase would be Ti3Al with negligible amounts of TiAl, while with 10 wt% excess Al, TiAl phase could be formed in the composite product.The results also showed that microwave synthesis took place faster and more reproducible when samples were packed in the graphite powder than when placed between two SiC blocks.


F. Delshad, M. Maghrebi, M. Baniadam,
Volume 40, Issue 2 (9-2021)
Abstract

Carbon nanotubes contain impurities and deamorphization is one of the methods of their purification. In this study, for the first time, a solution of piranha with a ratio of 3:1 (30 ml sulfuric acid + 10 ml hydrogen peroxide) as well as microwave irradiation with processing time of 30 minutes were used to remove amorphous carbon from the nanotube arrays. Ultrasonication was performed to disperse pristine and purified carbon nanotubes in water and centrifugation was performed to separate large particles. To assess the removal of amorphous carbon, new characterization methods such as dispersed percent and floating percent were used. It was observed that with increase in the ultrasonication time (from 0 to 50 minutes), the dispersed percentage of treated arrays was increased (about 47%), while the floating percentage of pure array decreased (about 20%). These results are ascribed to the removal of amorphous carbon. The results of the thermo gravimetric analysis (TGA) were in good agreement with the results obtained from the newly proposed characterization methods.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb