Showing 6 results for Mullite
N. Miadi, H. Sarpoolaky, H. Ghassai,
Volume 32, Issue 1 (6-2013)
Abstract
In this study, mullite– irconia composite samples were prepared by reaction sintering of alumina and zircon powder via gel casting process. Gel casting is a new ceramic forming technique. This process is based on the casting of slurry, containing ceramic powder, dispersant and premix monomer solution. To achieve stabilized, high solid loading (80 wt%) and castable slurry, the rheological properties of slurry were optimized. The monomers polymerized the slurry to form gelled specimens. After gelation, the specimens were unmolded, then dried out under controlled condition. Burning out and sintering of the specimens was carried out in the range of 1400-1700°C. Apparent porosity and bulk density of the sintered samples were measured by soaking in water. Crystalline phase evolution and microstructure were determined by XRD and SEM techniques. Results showed that the reaction sintering and mullite formation was completed at 1700°C due to very slow diffusion of Al3+ ions within amorphous silica formed at the decomposition of zircon. The sintered samples at this temperature also showed the lowest apparent porosity (≈ 4%) and the highest bulk density (≈3.40 gr/cm-3).
N. Setoudeh,
Volume 32, Issue 2 (12-2013)
Abstract
A powder mixtures of 18.72% wt, 17.67% wt Al2O3 and 63.6% wt zircon were prepared and milled in a planetary ball milled for one up to 10 hours in presence of air. After removal Iron impurity from as-milled samples, they were isothermally heated in temperature range of 1300-1450 0C for one hour in an air atmosphere. After cooling the samples, they were studied using XRD analyses. The XRD and PSA analyses were showed that the size of particles in the mixtures decreased with increasing of milling time and the mixtures became amorphous nature. The isothermal runs observed that pre-milling on the mixtures has great effect, wherever the zircon decomposition temperature and mullite formation temperature decreased to about 1300 0C in a one-hour-milled sample. The amount of tetragonal zirconia increased with increasing in milling time at 1300 0C, however the amount of tetragonal zirconia decreased with increasing of temperature up to 1450 0C. The amount of tetragonal zirconia at 1300 0C in the three hours milled samples was the highest value among all samples.
M. Rahmani, K. Janghorban , S. Otroj,
Volume 33, Issue 1 (7-2014)
Abstract
In this study, the effect of different amounts of Y2O3 on the properties of mullite-zirconia composites was investigated. For this purpose, these composites were fabricated by reaction-sintering of alumina and zircon as raw materials. Besides, the slip casting method was used for forming these composites, and sintering process was carried out at 1600 °C. Then, the physical and mechanical properties, phase composition and the microstructure of these composites were investigated. The results showed that yittria addition up to 0.5 wt.% has no effect on the properties of these composites. Besides, addition of more than 0.5 wt.% yittria formed solid solution with zirconia grains and led to stabilization of tetragonal zirconia phase and increasing of its amount. Hence, yittria addition increases the hardness and bending strength of composite by stabilizing tetragonal zirconia phase and then, decreasing the micro-crack formation during zirconia phase transformation. As results show, addition of 0.75 wt.% yittria leads to a considerable increase in the bending strength.
M. Rahmani, K.janghorban, S. Otroj,
Volume 33, Issue 2 (3-2015)
Abstract
In this study, the effect of different amounts of Y2O3 on the properties of mullite-zirconia composites was
investigated. For this purpose, these composites were fabricated by reaction-sintering of alumina and zircon as raw materials.
Besides, the slip casting method was used for forming these composites, and sintering process was carried out at 1600 °C. Then,
the physical and mechanical properties, phase composition and the microstructure of these composites were investigated. The
results showed that yittria addition up to 0.5 wt.% has no effect on the properties of these composites. Besides, addition of more
than 0.5 wt.% yittria formed solid solution with zirconia grains and led to stabilization of tetragonal zirconia phase and
increasing of its amount. Hence, yittria addition increases the hardness and bending strength of composite by stabilizing
tetragonal zirconia phase and then, decreasing the micro-crack formation during zirconia phase transformation. As results show,
addition of 0.75 wt.% yittria leads to a considerable increase in the bending strength
P. Seifollahzadeh, M. Kalantar, A. Mashreghi, S.s. Ghasemi,
Volume 34, Issue 3 (12-2015)
Abstract
Mullite and alumina are common in high-temperature applications because of their low thermal expansion coefficient and good thermal shock resistance. Evolution of SiC in the matrix and using it as reinforcing phase can improve thermo-mechanical properties of these materials. Also, in-situ formation of the reinforcing phases by using inorganic materials is an economical process. In this work, crystallization of SiC as reinforcing phase in the matrix of mullite-alumina by carbothermal reaction processes of inorganic materials (andalusite and kaolinite) was studied. According to the ratio of C/SiO2 and process conditions, some properties of the composite such as phase transformation, microstructure and physical and mechanical properties were investigated. The results showed that optimal ratio of C/SiO2 and firing temperature of densification to form SiC crystals were 3.5 and 1600°C for andalusite and 5.5 and 1500°C for kaolinite.
N. Zakeri, S. Otroj, M.r. Saeri,
Volume 34, Issue 3 (12-2015)
Abstract
In this study, the effect of nano-titania addition on the mechanical strength of mullite-bonded alumina-siliconcarbide nano-composites was investigated. To this end, the gel-casting process via nano-silica sol was used for shaping the nano-composite.The firing temperature of composition was determined by use of STA. The compressive and bending strengths of samples were measured after firing at 1300 °C. Besides, the physical properties, phase composition and microstructure of the composites were evaluated after firing. The results showed that the use of nano-titania up to 1 wt.% had a higher effect on improvement of nano-composite mechanical strength. The nano-titania addition led to increasing of mullite phase and higher growth of its needle-like grains. Enhancing of ceramic bonds between grains and the improvement of mechanical strength were obtained by increasing the mullite phase.