Search published articles


Showing 3 results for Nano Particles

S. Salehi, M. H. Fathi, K. Raeissi,
Volume 29, Issue 1 (6-2010)
Abstract

The addition of ZrO2 particles to the HA coating has received considerable attention because ZrO2 particles increase the bonding strength between HA coating and substrate. In this study, nanostructured hydroxyapatite (HA)/yttria stabilized zirconia (YSZ) coatings were prepared by a sol–gel method. It was found that at 950ºC, the dominant phases were HA and tetragonal (t)-zirconia in 3YSZ, cubic (c)-zirconia in 8 YSZ and t-c-Zirconia in 5YSZ phases with the small amounts of β-tricalcium phosphate (β-TCP) and CaZrO3. The crystallite size of the coating was about ~20-30 nm for tetragonal and cubic zirconia grain size and 40-80 nm for hydroxyapatite grain size. Crack-free and homogeneous HA/YSZ composite coatings were obtained with no observable defects. In vitro evaluation in 0.9% NaCl showed that Ca2+ dissolution rate of composite coatings was lower than that of pure HA coatings. The decrease in electrochemical performance of these coated samples in comparison with the uncoated type 316L St.St could be associated with chloride ion and water penetration into the coating, transport of ions through the coating, and the subsequent electrochemical reactions at the coating–metal interface.
P. Razmjouee, S. M. Mirkazemi,
Volume 34, Issue 1 (5-2015)
Abstract

In this investigation, the effect of Polyvinylpyrrolidone (PVP) additive on microstructure, morphology and magnetic properties of cobalt ferrite nanoparticles prepared by hydrothermal method was studied. X-ray diffraction (XRD) studies in different synthesis conditions showed the formation of cobalt ferrite and cobalt oxide. Comparing IR spectrum of PVP additive, sol prepared before hydrothermal process and C-0.1PVP3, 190 obtained by FTIR spectroscopy indicated the formation of bond between PVP and surface of metallic hydroxide and cobalt ferrite particles, which prevented them from growing and coarsening. Scanning electron microscope (SEM) was used to study the morphology of samples. According to vibration sample magnetometer (VSM) results, as PVP amount increases from 0.1 to 0.3 volume percent, coercive field increases from 298 to 684 Oe and saturation magnetization decreases from 58 to 51 emu/g.


A. Abdolahi, M. R. Saeri, F. Tirgir, A. Doostmohammadi, H. Sharifi,
Volume 35, Issue 1 (6-2016)
Abstract

In this study, NBG was successfully achieved through a sol-gel technique, and to further improve its dispersibility, a crylate coupling agent was coupled onto the surface of the NBG. The 3-(Trimethoxysilyl)Propylmethacrylate coupling agent was used to the surface modification of the synthesized NBG by a wet-chemical method in a dynamic inert nitrogen atmosphere. The surface properties of the biomaterials before and after modification were characterized and compared using FTIR and AFM techniques. The characteristic peaks in FTIR spectra indicated that –CH2, –CH3 and C=O groups appeared on the surface of modified NBG, and also, AFM analysis revealed that the dispersibility of surface modified NBG was improved, significantly. The above results proved that the desired groups of 3-(Trimethoxysilyl)Propyl methacrylate had been covalently bonded onto the surface of NBG. Besides, a nanocomposite scaffold was synthesized using the synthesized NBG and polyurethane foam as raw materials. The morphology of pores, porosity contents, compress strength and bioactivity of the scaffold were studied. The results showed that the biological scaffolds for use in bone tissue engineering with the basic requirements (90% porosity and 200-600 μm pore diameter) were successfully prepared. The polymer component had no effect on the relationship between the scaffold pores and bioactivity of bioglass nanoparticles. Improvement of compressive strength and proper bioactivity of the resulted scaffold showed that it is an acceptable candidate for biomaterials applications.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb