Search published articles


Showing 5 results for Nanopowder

M .kharaziha, M.h. Fathi,
Volume 29, Issue 1 (6-2010)
Abstract

In this study, forsterite nanopowder was prepared by mechanical alloying and post-heat treatment method. Bioactive properties of forsterite nanopowder were studied by immersing the powder in the SBF. Nanostructure forsterite bulk dense form was prepared by the two step sintering method. It was found that pure forsterite nanopowder with 25-60nm particle size was produced. The results of soaking of forsterite nanopowder in the SBF showed that forsterite nanopowder is bioactive. Also, forsterite dense bulk with the optimal hardness of 940 Hv and fracture toughness of 3.61 MPa.m1/2 was produced. These findings suggest that forsterite nanostructure ceramics possess good biocompatibility, bioactivity and mechanical properties and could be suitable for orthopedic and dental implant materials.
Z. Asghary, K. Zangeneh-Madar , S. Borji , H. Abbaszadeh, S. Seyyedin,
Volume 33, Issue 1 (7-2014)
Abstract

In this article, sintering activation methods of Mo powder (chemical, mechanical and surface activation) were studied. For this purpose, the milled/reduced Mo nanopowder was sintered at 900, 1100 and 1400 ºC for 1 hr. For comparison of sintering activation methods (mechanical and chemical activation) and their effects on microstructural characteristics, commercial micropowder Mo as well as Ni additive was used. The samples were compacted under a pressure of 400 MPa and then sintered at 1400 ºC for 1 hr. The microstructure of sintered samples was studied by scanning electron microscope (SEM) along with EDS. Phase analysis was performed using X-ray diffraction (XRD) technique. The sintered densities of samples were measured by Archimedes method. Relative densities of specimens obtained from micro, nano, micro+20% nano and micro+1.5% Ni additive powders were attained as 80%, 93%, 86% and 95%, respectively. It was found that the δ-NiMo intermetallic layer may be formed at the grains' boundaries due to Ni additive, leading to grain boundary microcracks as well as loss of mechanical properties of samples.
M. Khajelakzay, R. Shoja Razavi, S.m. Barekat,
Volume 34, Issue 3 (12-2015)
Abstract

Precipitation has always been one of the important methods in the preparation of ceramic nanopowders. In this study, the most important parameters, ageing time and concentration parameters, have been studied. Yttrium oxide (Yttria) nanopowder was synthesized by precipitation method. Yttria micropowder and ammonium hydrogen carbonate were used as precursor materials. The study involved aging time and concentration in four and three levels, repectively (3, 6, 12 and 24h for ageing time and 0.25, 0.5 and 0.75 mol/L for concentration). Synthesized phases, thermal behavior and particle size were studied by X-ray diffraction pattern (XRD), thermogravimetry (TG), differential thermal analysis (DTA) and field emission scanning electron microscopy (FE-SEM). Fourier transform infrared spectroscopy analysis (FTIR) was used for studying bonding before and after the heat treatment at 900, 1000 and 1100 °C.


M. Khajelakzay, S. R. Bakhshi, G.h. Borhani,
Volume 34, Issue 4 (3-2016)
Abstract

In this study, synthesis of silicon nitride by mechanical alloying and the effects of important parameters of milling time and heat treatment temperature, time and rate are presented. Silicon micro powder and nitrogen gas were used as precursor materials. Synthesized phases, morphology and particle size were investigated by X-ray diffraction pattern (XRD) and Field emission scanning electron microscopy (FE-SEM), respectively. X-ray fluorescence analysis (XRF) was used for silicon nitride purity investigation.The optimum sample was produced at 30 h milling time, heat treatment at 1300 and 22 /min heating rate conditions. X-ray fluorescence analysis showed more than 98% purity.


S.t. Mohammadi Benehi, S. Manouchehri, M.h. Yousefi,
Volume 35, Issue 3 (12-2016)
Abstract

Magnesium-manganese ferrite nanopowders (MgxMn1-xFe2O4, x=0.0 up to 1 with step 0.2) were prepared by coprecipitation method. The as-prepared samples were pressed with hydrolic press to form a pellet and were sintered in 900, 1050 and 1250˚C. Scanning Tunneling Microscope (STM) images showed the particle size of powders about 17 nm. The X-ray patterns confirmed the formation of cubic single phase spinel structure in samples sintered at 1250˚C. Substituting Mg2+ with Mn2+ in these samples, the lattice parameter decreased from 8.49 to 8.35Å and magnetization saturation decreased from 74.7 to 21.2emu/g. Also, coercity (HC ) increased from 5 to 23Oe and Curie temperature (TC ) increased from 269 to 392˚C. Samples with x= 0.2, 0.4, 0.6 sintered at 1250 ˚C, because of their magnetic properties, can be recommended for hyperthermia applications and for phase shifters.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb