S. Shirinparvar, R.s. Razavi, F. Davar, M.r. Loghman-Estarki, S. Ghorbani,
Volume 35, Issue 4 (2-2017)
Abstract
In this research, the nanopowders of lanthanum and neodymium co-doped yttria were synthesized by sol-gel combustion method. Citric acid and glycine were used as the gel maker and fuel respectively. The effect of molar ratio of citric acid to glycine on the grain size and morphology was evaluated. The optimized products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), UV–visible (UV–Vis), thermal gravimetric-differential thermal analysis (TG/DTA), and Fourier transform infrared spectrometer (FTIR). The optimized products which are synthesized with a molar ratio citric acid to glycine 1.06:1.06 have an average grain size of 30-40nm with spherical morphology, and without agglomeration. Also, their band gap is 3.29eV.
A. Ghasemi, M. R. Loghman Estarki, S. Torkian, G. R. Gordani,
Volume 39, Issue 2 (8-2020)
Abstract
The purpose of this study was to evaluate phase changes and magnetic properties of neodymium doped Ni0.7Zn0.3NdxFe2-xO4 (x = 0, 0.01, 0.03, 0.05, 0.07, 0.10) nanoparticles synthesized by complexing sol-gel method. In this method, triethanolamine (TEA) acted as both a gelling agent and a chelating agent. Samples were characterized by X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDX). XRD patterns of all synthesized samples revealed the formation of a spinel ferrite phase. Magnetic evaluation of the specimens showed that the Nd0.01 doped sample with a quasi-spherical morphology and particle size of about 60 nm has the highest saturation magnetization of 50 emu/g and coercive force of 103 Oe.