Search published articles


Showing 16 results for Nickel

A. Nasr-Esfahany and M.heydarzadeh Sohi,
Volume 23, Issue 2 (1-2005)
Abstract

Zinc-Nickel electrodeposits have been widely adopted for surface treatment of automobile steel sheet for high corrosion resistance. In this work the effect of pulse parameters on the Zn-Ni alloy electrodeposits was investigated. The hardness, thickness, corrosion resistance and composition of deposits thus produced were investigated. The surface topography of the deposits was also observed in SEM and results are reported. It has been shown that the thickness of the pulse electrodeposits was almost even. The hardness in the pulse electrodeposits increased by increasing the on-time period and by decreasing the current density. It was also noticed that increasing the on-time period increases the nickel content of the deposit. Pulse electrodposits had fine structure and the structure become finer by reducung the on-time period and pulse frequency. The corrosion dehaviors of the deposits were then investigated. The results showed that the corrosion resistance of the DC electrodeposits improves in their nickel content increases. Pulse electodeposits show the same behavior, but deposits with about 13% nickel show maximum corrosion resistance.
M. Karbasi, A. Saidi, and Gh. Ariyanpour,
Volume 26, Issue 1 (7-2007)
Abstract

Production of nickel-silver by mechanical alloying was investigated. Effects of parameters such as milling duration, ball to powder weight ratio, and chemical composition on mechanical alloying process, and alloy's color and microstructure were studied. The milled powders were characterized, using XRD and SEM. Results showed that nickel-silvers could be produced by mechanical alloying in a wide range of compositions. Alloyed powder with a bright silvery contrast and less than 15 nm grain size could be obtained by optimization of milling parameters. Zinc content of the powder mixture had a significant effect on the minimum alloying time. Ball to powder ratio up to 25 also reduced minimum alloying time but it had no significant effect above this value.
M. Khalili Savadkoohi, A. Samadi,
Volume 31, Issue 2 (12-2012)
Abstract

Coherency elastic strain between γ and  is one of the effective factors which affect the morphology, spatial re-arrangement and coarsening kinetics of  precipitates in nickel-base superalloys. In this investigation, using X-ray diffraction (XRD) technique, the - constrained and unconstrained lattice misfits were calculated for different morphologies of the  precipitates in Inconel 738LC nickel-base superalloy. The constrained and unconstrained misfits, hence the coherency elastic strains of different morphologies of the  precipitates were calculated from the XRD patterns of the bulk sample and electrolytically extracted  precipitates, respectively. According to the results, as the sizes of the  particles increased the - coherency as well as the compressive strain of the  precipitates was reduced and consequently their morphology changed from spherical to cubic, then flower-like, and finally dendritic shapes.
A. M. Molavi, S. M. Mirkazemi, A. Beitollahi,
Volume 32, Issue 1 (6-2013)
Abstract

The effects of temperature, time and atmosphere on microstructure and magnetic properties of NiFe2O4 glassceramic were investigated utilizing differential thermal analysis, X-ray diffraction, vibrating sample magnetometer and scanning electron microscope techniques. Various compositions were studied in the Na2O-NiO-Fe2O3-B2O3-SiO2 system to obtain amorphous phase. The sample heat-treated in graphite bed at 510°C for 1 hr showed higher magnetization than the one heattreated in the air under the same condition. XRD analysis showed the presence of nickel ferrite and some non-magnetic phases such as sodium borate and silicate phases in the heat treated samples. The maximum magnetization of samples reduced by increasing the holding time from 1hr to 3 hr at 510°C. Increment of temperature to 700°C increased the amount of NiFe2O4 and maximum magnetization.
Fatemeh Mohtaram, Vahid Mottaghitalab, Gholamreza Baghersalimi, Akbar Khodaparast Haghi,
Volume 33, Issue 3 (3-2015)
Abstract

Today, along with the advances in circuit printing technology it has become possible to fabricate band lines integrated with circuit elements. The band lines are known as microstrip lines and the whole packages are called microstrip antennas. The microstrip antennas have three layers, including conductive patch layer, dielectric sub layer, and ground conductive layer. One of the most important problems of prevalent antennas is their inflexibility, which was addressed in the current paper using textile based structure with proper flexibility and flexural stiffness. This was done using ink jet printing techniques followed by electrolytic plating to provide diverse antenna patterns based on nickel particles. The coated surface was characterized by scanning electron microscope, elemental analysis and optical microscope. Moreover, the washing fastness and the other physical and mechanical specifications were measured using standard techniques. The elemental analysis of metal-coated fabric clearly indicated a high level of nickel. Furthermore, the morphological investigation proved the formation of homogenous nickel nanoparticle in a diameter range of 100-500 nm with an evident boundary and semi-spherical shape. In addition, the cumulative presence of particles in a sequence followed a cabbage-like structure originating from metallic crystals. The washing fastness tests revealed a high stability in electrical resistance after several washing steps. In the meantime, the antenna gain and the corresponding bandwidth were measured using spectrum analyzer. The results indicated a 1 kHz increase in bandwidth and 11 dB decrease in antenna gain for a large size compared to a small one. Meanwhile, the bandwidth of rectangular pattern showed a 0.2 kHz increase and 2.5 kHz decrease compared to spiral pattern. Finally, the four-probe electrical conductivity test demonstrated a high level of conductivity around 2632 S/cm.
P. Zarrabian, M. Kalantar, M. Mosallaeepour, A. Mashreghi,
Volume 33, Issue 3 (3-2015)
Abstract

Nickel ferrite based cermets and their relevant composites have been widely used as inert anodes for aluminum electrolysis due to their good combination of chemical resistance, thermal stability and mechanical properties. In this study, various NiO/NiFe2O4 composites consisting of 5, 10 and 15% NiO in conjunction with Cu/NiFe2O4 cermets containing 0.5, 10 and 15% Cu were prepared by powder metallurgy method. The degradation resistance of the developed inert composites was examined under hot corrosion condition by plunging samples in to the molten electrolyte at 1000ºC. The strength, toughness, hardness, relative density, microstructural observation, phase analysis and electrical resistivity were evaluated by 3-points bending tests, Vickers method, Archimedes method, scanning electron microscope, x-ray diffraction and conventional direct current four-probe techniques, respectively. The experimental results for NiO/NiFe2O4 composites showed that a significant improvement of toughness and degradation resistance continuously occurred with a moderate decrease in strength by increasing NiO content, while the relative density was increased only up to 5%NiO content. By increasing the Cu content in the cermet samples, all the properties such as strength, toughness and electrical conductivity were improved considerably but the degradation resistance decreased.
R. Nayerhoda, F. Asjadi, P. Seifi, M. Salimi,
Volume 34, Issue 1 (5-2015)
Abstract

In the present investigation, spherical nanoparticles of nickel ferrite with uniform structure were successfully produced by hydrothermal method in the presence of polyethylene glycol (PEG) as a polymeric surfactant at 180°C for 12 hour aging time and the effects of the synthesis time, temperature and surfactant were investigated. According to the X-ray analysis, conversion of nickel oxide and hematite to nickel ferrite was a way to produce NiFe2O4. At 140‌°C, agglomerated particles without specific shape were formed, but at 180°C particles were homogenous with spherical shape. Saturation magnetization increased by increasing the hydrothermal process aging time.


S. Khorsand, K. Raeissi, F. Ashrafizadeh,
Volume 34, Issue 4 (3-2016)
Abstract

Super-hydrophobic nickel and nickel-cobalt alloy coatings with micro-nano structure were successfully electrodeposited on copper substrates with one and two steps electrodeposition. Surface morphology, wettability and corrosion 

resistance were characterized by scanning electron microscopy, water contact angle measurements, electrochemical impedanc spectroscopy (EIS) and potentiodynamic polarization curves. The results showed that the wettability of the micro-nano Ni and Ni-Co films varied from super-hydrophilicity to super-hydrophobicity by exposure of the surface to air at room temperature. The corrosion results revealed the positive effect of hydrophobicity on corrosion resistance of Ni coating (~10 times) and Ni-Co coating (~100 times) in comparison with their fresh coatings. The results showed that super-hydrophobic nickel coating had higher corrosion resistance than super-hydrophobic nickel-cobalt coating.


V. Rajaei, K. Raeissi, M. Shamanian, H. Rashtchi,
Volume 35, Issue 1 (6-2016)
Abstract

In this study, Ni-Mo nanocrystalline alloys were prepared on steel substrates by electrodeposition method from citrate-ammonia bath by applying current densities 30, 60 and 100 mA/cm2. Results indicated that the obtained coatings were uniform and compact. Moreover, molybdenum content in the alloy and current efficiency decreased with increasing electrodeposition current density. X-ray diffraction analyses indicated that all coatings were composed of face-centered cubic solid solution of molybdenum in nickel with grain size of 9-5 nanometer. Moreover, the most intensive plane in X-ray diffragtogram was (111). On the othe hand, roughness measurements indicated that surface roughness escalated with increasing current density. Corrosion behavior study showed decrease in corrosion current density of substrate with applying Ni-Mo alloy coatings. In addition, corrosion current density reduced with increasing molybdenum content of the coating and the minimum amount was related to the coating with 13 atomic percent molybdenum.


M. Pourkarimi, B. Lotfi, F. Shahriari Nogorani,
Volume 35, Issue 4 (2-2017)
Abstract

In this study, creation of a silicon aluminide coating on IN738LC nickel-based superalloy has been investigated, using co-deposition process. Thermochemical calculations indicated the possibility of obtaining a silicon aluminide with NH4Cl activated pack powder at 900°C, in order to achieve coating with desirable structures. Two powder mixtures with nominal compositions of 7Si-14Al-(1-3) NH4Cl-Al2O3 (wt. %) and 16Si-4Al-(1-3) NH4Cl-Al2O3 (4 and 0.5 Si/Al ratios, respectively) were used. According to the results, both coatings showed multi-layered structures containing AlNi2Si as dominant phase. In coating created by pack powder with Si/Al ratio of 0.5, a porous and brittle layer of NiSi was formed on the surface which deteriorated the mechanical properties of coating to some extent. It was found that inward diffusion of Al was dominant at the first stage, while afterward, inward diffusion of Si led to conversion of NiAl phase to AlNi2Si and, finally, to NiSi phase. Eventually, the sample coated by Si/Al=4, showed superior microstructural characteristics, containing desirable AlNi2Si phase without undesirable brittle NiSi phase.


S. Alamolhoda, S. M. Mirkazemi, T. Shahjooyi, N. Benvidi,
Volume 36, Issue 2 (9-2017)
Abstract

In this research, nickel ferrite nanoparticles were synthesized by sol-gel auto-combustion route, and the effect of calcination temperature on phase constituents, magnetic properties and microstructure of the synthesized nanoparticles was evaluated using X-ray Diffraction (XRD), Vibrating Sample Magnetometer (VSM) and Scanning Electron Microscopy (SEM). XRD results were submitted to quantitative analysis. Microstructural studies and crystallite size calculations showed formation of nanoparticles. XRD results showed that the combustion product consisted of NiFe2O4, α-Fe2O3, NiO, and FeNi3 phases. FeNi3 was eliminated by calcination, and the amounts of NiO and α-Fe2O3 were modvlated by changing in calcination temperature. Saturation magnetization changed from 37emu/g in combustion product to 30emu/g by calcination at 600°C, due to decomposition of FeNi3 magnetic phase and formation of higher amount of antiferromagnetic hematite phase. Also, the coercivity values increased, that could be due to increasing the amount of nickel ferrite phase and eliminating FeNi3 phase. Saturation magnetization reached to 43emu/g in calcinated sample at 1000°C due to the reaction between hematite and NiO phases that led to formation of higher amount of nickel ferrite to 43emu/g. Coercivity value dropped out to 127Oe by calcination at 1000°C, the reason of which could be incresing of particle size and formation of multi domain magnetic particles.
 


M. H. Bakhshi, A. Zakeri,
Volume 36, Issue 4 (3-2018)
Abstract

Electrowinning is one of the methods for recovery of nickel metal from pregnant leach solutions. In industrial practice, the Ni content in electrolytes is usually above 80 g/L. However, many nickel solutions obtained from processing of secondary nickel resources are much less concentrated and this makes the electrowinning of such solutions difficult. In the present study, Nickel electrowinning from 30 g/L sulfate solutions has been investigated and the effect of the parameters such as current density (CD), temperature (T) and boric acid concentration (BA) on the current efficiency and nickel deposit quality has been determined using a central composite design methodology. The statistical analysis of experimental results revealed the significant factors and a proper model was obtained for each response variable. The results revealed two important negative interaction effects of T´BA and CD´BA which means that increasing temperature and current density could result in a higher current efficiency and satisfactory Ni deposit quality only at lower boric acid concentrations. By using overlaid contour plot method for multiple response optimization, the optimum condition for attaining current efficiencies of >95% and a smooth  and compact Ni deposit quality was determined as CD = 2-2.5 A/dm2, T = 25-30 °C, and BA = 10 g/L.

Gh. Akbari, M. H. Enayati, H. Minouei,
Volume 37, Issue 1 (6-2018)
Abstract

In the present study, the mechanical alloying process was used to produce the Ni-Nb-Si amorphous alloy. X-ray diffraction (XRD)analysis and high-resolution transmission electron microscopy (HRTEM) were used to approve the amorphous phase formation after 12 hours of mechanical alloying. The results obtained from the SEM morphological images of powder particles during mechanical alloying showed that increasing the milling time caused the reduction  of the powder particles size and uniformity in the shape of the particles. Enhancing the embrittlement and fracturing rate caused brittleness and the  increase in the  failure rate; these were followed by a decrease in the powder particle size to 1-5μm. Cold welding and flattening of the pure elemental powders after mechanical alloying for 2 hours formed a lamellar structure of the alternative layers of different elements lying over each other. SEM image of cross-section of powder particles showed that by increasing the milling time, the interlamellar spacing was decreased, the elements were distributed more uniformly, and finally, a uniform structure of theamorphous phase was completed.


S. Masoomi Ganjgah , M. Abbasi,
Volume 39, Issue 4 (2-2021)
Abstract

This study aims at investigating changes in microstructure and strength of W alloy and Cu bimetals with varying spark plasma sintering (SPS) temperature and percentage of copper in W-Cu-Ni alloy. After SPS of W (12 wt%)-Cu (14 wt%)-Ni (3 wt%) alloy powder into consolidated discs at 1350 ° C, they were spark plasma sintered to copper discs at various temperatures. Assessment of the interface microstructure and shear strength was performed by field emission scanning electron microscpe (FESEM) and shear strength test, respectively. Results indicated SPS is successful in forming a perfect metallic bond with monolithic interface and high shear strength of about 45 MPa in Cu/W-12Cu-3Ni bimetal that is extra high quality and not reported in previous investigations.
 

R. Moradi, M. Roshanaee, H. Mostaan, F. Nematzadeh, M. Safari,
Volume 40, Issue 1 (5-2021)
Abstract

In this research, microstructure and mechanical properties of laser welded joints between 2304 duplex stainless steel and Inconel 718 nickel-based super alloy were investigated. Microstructural evolution in the various areas of welded joints and also the effect of welding parameters on the mechanical properties of dissimilar joints were studied. Response surface methodology based on the central composite design was used in order to find the optimum welding parameters. Effective parameters of the welding process including laser power, travel speed and defocusing distance were set in the range of 1000 to 1900 W, 1 to 5 mm/s and -1 to 1 mm, respectively. Uniaxial tensile test was used to evaluate the fracture force of weld joints. The microstructural observations and phase evolutions were studied using optical microscope. It was found that the fracture force of the weld joints firstly increased by travel speed and defocusing distance and then decreased by further increase. The maximum fracture force was obtained when laser power, travel speed and defocusing distance were 1900 W, 3 mm/s and 0 mm, respectively. The center line of weld metal was mainly consisted of equiaxed grains where, columnar grains were formed in the fusion line. The obtained results from the hardness measurement showed that the hardness of Inconel 718 was decreased due to dissolution of TiC and NbC particles. 

P. Verdi, S. M. Monirvaghefi, F. Ashrafizadeh,
Volume 40, Issue 3 (11-2021)
Abstract

Regarding to the low rate of conventional Ni-P electroless plating method that needs more time to make a coating on the substrate surface, a new technique called “substrate local heating” was introduced based on the temperature parameter modification and its advantages were expressed and compared to the conventional electroless plating technique (temperature=90°C, pH=4.7). In order to provide necessary equipment making this approach practicable, electrical resistance was used as the heating source, and air injection and cooling water circulation were employed to control the solution temperature near the substrate and in the bulk solution, respectively. Considering the heater power (1000 W), the substrate and bulk temperatures were about 190°C and 80°C, respectively. This novel method could enhance the plating rate up to 32 µm/h which was about 60% greater than that of the conventional method, 20 µm/h. Moreover, benefits such as local plating, reduction of production costs, and formation of functionally graded coatings (FGC) can be achieved.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb