Search published articles


Showing 2 results for Nonlinear Analysis

A. F. Nateghi, A. Vasseghi, and V. L. Shahsavar,
Volume 25, Issue 1 (7-2006)
Abstract

Bridges are potentially one of the most seismically vulnerable structures in the highway system during earthquake events. It is known that the seismic performance of transportation systems plays a key role in the post-earthquake emergency management. Hence, it is necessary to evaluate both physical and functional aspects of bridge structures. The physical aspects of the seismic performance of bridges are evaluated by seismic fragility functions or damage probability matrices of transportation facilities. The fragility curves represent the probability of structural damage due to various levels of ground shaking. The fragility curve describes a relationship between a ground motion and a level of damage. In this paper, the fragility curves (F.C) are developed. The vulnerability of a railway prestreed concrete bridge is assessed using fragility curves derived from dynamic nonlinear finite element analysis. A software package is developed in MATLAB to study the results obtained. Modeling of the bridge using 3D nonlinear models and modeling of abutments, bearings, effect of falling of girder on its bearings, and nonlinear interaction of soil-structure are some of the advantages of this research compared to previous ones. Reliability curves developed in this study are unique in their own kind. The proposed method as well as the results are presented in the form of vulnerability and structural reliability relations based on two damage functions.
S. M. Zahrai and B. Rad,
Volume 25, Issue 2 (1-2007)
Abstract

In recent years, destructive earthquakes have shown the deficiencies of the existing buildings. One of the most effective mechanisms for dissipating the earthquake energy is inelastic deformation of the steel components. The objective of this research is to study the application of metallic dampers for dissipation of the earthquake energy and to investigate the behavior of concrete structures incorporating these dampers. Therefore, the metallic dampers and the behavior of concrete structures having these dampers are studied first. Afterwards, a typical metallic damper is used in four different types of concrete structure. The required dampers are designed and nonlinear earthquake analysis is applied to investigate the behavior of the structures. Finally, the buildings are subjected to various earthquakes to generalize the results. The results show that the incorporation of the metallic dampers significantly decreases the relative and absolute drift, the structure and the stories damage indices and, finally, the number of plastic hinges. Furthermore, the hysteretic energy dissipation demand also decreases in structural components. Despite the reduction in the inner forces of structural components, story shear forces slightly increase due to increase of lateral stiffness, but much of these forces will concentrate in dampers. Moreover, the combination of moment resisting frame, shear wall, and metallic dampers are studied. The results show a similar trend in the stated parameters- especially the drift and the hysteresis energy dissipation demand.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb