Search published articles


Showing 2 results for Numerical Model

M.r. Bannazadeh, A. A. Bidokhti, M. Kherandish and H. F. Hosseini,
Volume 21, Issue 1 (7-2002)
Abstract

Observations of the Caspian Sea during August-September 1995 are used to develop a three-dimensional numerical model to be used in calculating temperature and current. The model has variable grid resolution and horizontal smoothing that filters out small scale vertical motion. Data from the meteorological buoy network on the Caspian Sea are combined with routine observations at first-order synoptic station around the lake to obtain hourly values of wind stress and pressure fields. The hydrodynamic model of the Caspian Sea has 6 vertical levels and a uniform horizontal grid size of 50 km. The model is driven with surface fluxes of heat and momentum derived from observed meteorological data. The model was able to reproduce all the basic features of the thermal structure in the Caspian Sea and larger-scale circulation patterns tended to be anticyclone, with anticyclone circulation within each sub-basin. The results matched observation data. Keywords: Circulation, Temperature, Numerical model, Vorticity, wind stress
S. R. Hosseini, M. Barati, E. Maghsoudi,
Volume 36, Issue 1 (6-2017)
Abstract

The aim of the present research is calculation and determination of the temperature distribution in the oxy-gas source line heating process for application in the steel plates. Analytical method was used to calculate the temperature distribution by solving mathematical equations. The temperature distribution was determined with numerical method using MATLAB software. A computerized numerical control line heating apparatus was used for carrying out the processes. ITI thermograph camera was used to measure the temperature. The effect of torch distance, gas flow and torch speed on the temperature distribution at the upper and lower surfaces of plate were evaluated. The changes of temperature distribution were achieved at torch speeds of 120, 200 and 300 mm/min, gas flow of 10, 9 and 8 lit/min and torch distances of 30, 40 and 50 mm. Calculated and measured maximum temperatures reached to 900, 810 and 720 K, and 885, 785, 690 K, at torch speeds of 120, 200, 300 mm/min, respectively. The calculated and measured maximum temperatures at gas flow of 10, 9, 8 lit/min are attained to be 900, 810 and 750 K, and 885, 795 and 740 K, respectively. Maximum calculated and measured temperatures at torch distance of 30, 40 and 50 mm are accomplished to be 900, 880 and 810 K and 885, 840 and 790 K, respectively.
 



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb