Search published articles


Showing 2 results for Oxalic Acid

V. Mohammadpour, M. Soltanieh, Dr. M. Adeli,
Volume 37, Issue 1 (6-2018)
Abstract

In the present study, alkali roasting and oxalic acid leaching were used to extract titanium dioxide from ilmenite, and the effect of ethanol and ascorbic acid on the purity and recovery of titanium dioxide was investigated. In this research, ilmenite was alkali roasted with sodium carbonate for 4 hours at 900˚C. Then, the roasted ilmenite was leached with distilled water for 1 hour at room temperature. Finally, leaching with a mixture of 0.47M oxalic acid and different amounts of ascorbic acid and ethanol was performed at 65˚C. The results showed that using ethanol caused an increase in the amount of recovery and ascorbic acid increased the purity of the extracted titanium dioxide; also, the presence of these two factors at the same time simultaneously increased the amount of purity and recovery of the final product. Eventually, by choosing 0.47M oxalic acid, 0.005M ascorbic acid, and 48% ethanol as the appropriate conditions for leaching media and increasing the leaching time and temperature to 16 hours and 80˚C, it was possible to get titanium dioxide purities which were as high as 93.3% and 90.9%, respectively.


H. Mirzaaei Ghasabe, A. Zakeri, Sh. Mirdamadi, M. Ghorbanzadeh,
Volume 37, Issue 3 (12-2018)
Abstract

In this study, the recovery of lithium from the cathode of the spent Li-ion batteries of the LiNixMnyCozO2 type was investigated. After complete discharging and dismantling, the cathodic section was cut and its aluminum content was selectively dissolved in 2.5 M NaOH solution at room temperature for 2 hr. In the next step, selective dissolution of lithium by oxalic acid from the de-aluminized cathode material was investigated and optimized using the response surface methodology of  the central composite design. The effect of three parameters of time (35-100 min), temperature (40-70 °C), and oxalic acid  concentration (0.5-1.2 M) on the lithium recovery percentage and manganese concentration was studied as the response variables. According to the statistical analysis of the results and the developed models, an optimum condition (T = 70 °C, t = 122 min and oxalic acid concentration of 1.1 M) was suggested and verified experimentally, resulting in the lithium recovery of about 95% and Mn2+ concentration of about 110 mg/L.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb