Search published articles


Showing 2 results for Pack Cementation

M. Pourkarimi, B. Lotfi, F. Shahriari Nogorani,
Volume 35, Issue 4 (2-2017)
Abstract

In this study, creation of a silicon aluminide coating on IN738LC nickel-based superalloy has been investigated, using co-deposition process. Thermochemical calculations indicated the possibility of obtaining a silicon aluminide with NH4Cl activated pack powder at 900°C, in order to achieve coating with desirable structures. Two powder mixtures with nominal compositions of 7Si-14Al-(1-3) NH4Cl-Al2O3 (wt. %) and 16Si-4Al-(1-3) NH4Cl-Al2O3 (4 and 0.5 Si/Al ratios, respectively) were used. According to the results, both coatings showed multi-layered structures containing AlNi2Si as dominant phase. In coating created by pack powder with Si/Al ratio of 0.5, a porous and brittle layer of NiSi was formed on the surface which deteriorated the mechanical properties of coating to some extent. It was found that inward diffusion of Al was dominant at the first stage, while afterward, inward diffusion of Si led to conversion of NiAl phase to AlNi2Si and, finally, to NiSi phase. Eventually, the sample coated by Si/Al=4, showed superior microstructural characteristics, containing desirable AlNi2Si phase without undesirable brittle NiSi phase.


M. Mahmoudi Saleh Abad, M. Zandrahimi, H. Ebrahimi Far,
Volume 37, Issue 3 (12-2018)
Abstract

In order to improve the oxidation and hot corrosion resistance of steels, various elements including aluminum, chromium, silicon, titanium or combination of these elements can be diffused on to the surface of steel. In this study, aluminum and titanium were simultaneously co-deposited onto the AISI 430 ferritic stainless steel substrate by the pack cementation process. Coating was examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The coating consised of two layers with the thickness of approximately 14 microns. The results obtained by XRD showed the existence of FeTi, TiO2, AlTi, Al3Ti and Al5Ti phases in the coating. Isothermal oxidation and cyclic oxidation were carried out at 1000C. It was showed that the diffusional coating of aluminum-titanium led to the improvement of cycle and isothermal oxidation resistance.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb