Search published articles


Showing 3 results for Polyethylene Glycol

E. Velayi, R. Norouzbeigi,
Volume 36, Issue 4 (3-2018)
Abstract

A superhydrophobic ZnO surface was prepared on the stainless steel mesh by a one-step chemical bath deposition method without chemical post-treatment. The effect of adding polyethylene glycol 6000 (PEG 6000) as an organic additive and the type of the alkaline agent were investigated on the morphological and wettability properties of ZnO surfaces. The prepared surfaces were characterized by X-ray Diffraction (XRD), stylus profilometer, Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and Raman Spectrometer. The microstructure studies showed that the addition of PEG led to formation of densely branched and uniform ZnO rods with a length of 1.5 µm and a diameter of about 95 nm on the substrate. The surface wettability studies confirmed that the sample prepared in the presence of hexamethylenetetramine (HMTA) and 0.05 mM PEG with branched tree-like micro/nanostructure exhibited excellent superhydrophobic properties with the water contact angle (WCA) of 158.2°±1.5° and contact angle hysteresis (CAH) of 3.5°. In addition, the superhydrophobic showed good  chemical stability in the pH range of 4 to 8.

A. Razmjou, F. Noorisafa, N. Emami,
Volume 37, Issue 4 (3-2019)
Abstract

Polyurethane polymer plays an important role in health care, and it is widely used in medical devices and instruments. However, the low biocompatibility and biofilm formation on the surface can be regarded as a challenging issue. Engineering the wetting capability of the surface is an effective way to increase the biodegradability of polymer surfaces with sufficient bulk properties. In this study, the surface modification of polyurethane sheets by a thin layer of polyethylene glycol and trapping of titanium dioxide nanoparticles were carried out by means of physical and chemical changes on the surface to enhance the biocompatibility. The physicochemical properties of the modified surfaces were determined using fourier-transform infrared (FTIR) spectroscopy , scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and contact angle and free surface energy measurement. The biocompatibility of the modified levels was evaluated using the MTT toxicity test on cervical cancer cells (HeLA), bacterial adhesion, biofilm formation, and the protein absorption assay by the Bradford method. A thin, autoclave able and inexpensive thin layer with a solid and stable roughening structure was created covalently on the surface of the polyurethane plates for biological and medical applications. The results, therefore, showed that apart from antibacterial activity, the modified sample also had the ability to reduce the biofilm formation, such that the maximum biofilm attachment inhibition in the first 24 hours was 94% higher than that of the modified sample.

Sh. Talebniya, M. R. Saeri, I. Sharifi, A. Doostmohammadi,
Volume 41, Issue 1 (8-2022)
Abstract

Magnetic nanoparticles are of interest in various research fields such as magnetic fluids, catalysts, biotechnology, medicine, information storage, and environmental issues. However, spinel ferrite magnetic nanoparticles with proper magnetic properties could not be used alone in these applications because of their lack of biocompatibility and instability in aqueous solutions. Surface coating is an effective strategy to eliminate or minimize this issue. In this study, FeFe2O4 and ZnFe2O4 spinel ferrites were synthesized using the reverse co-precipitation method under a nitrogen gas atmosphere. The magnetic behavior of the particles, determined by a vibrating magnetometer (VSM) showed the saturation magnet (Ms) values of the FeFe2O4 and ZnFe2O4 spinel. Fourier-transform infrared (FTIR)  spectra showed two high-frequency bands v1 and v2 at about 554-578 and 368-397 cm-1, respectively, which were related to the spinel structure. Finally, the synthesized FeFe2O4 nanoparticles were coated with chitosan and polyethylene glycol (PEG) biopolymers. The TEM and FTIR analysis indicated that the magnetic nanoparticles were uniformly coated by the biopolymers.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb