Search published articles


Showing 2 results for Retained Austenite

A. Shirali, A. Honarbakhsh Raouf , S. Bazzaz Bonabi,
Volume 34, Issue 2 (7-2015)
Abstract

Certain amount of retained austenite can increase ductility of steels because of the TRIP phenomenon during plastic deformation. One method for achieving this is partitioning of carbon into austenite to stabilize it at room temperature. The quenching and partitioning (Q&P) heat treatment leads to a microstructure consisting of martensite and stabilized retained austenite between martensite plates, which provides a better combination of strength and ductility. In this study, the effect of parameters of Q&P process (quenching temperature, partitioning temperature and partitioning time) on the microstructure and retained austenite volume fraction of a low alloy medium carbon steel was investigated. The results showed that the high increase in partitioning time causes the disappearance of martensite blades and reduction of austenite volume fraction. However, increasing of partitioning temperature made the retained austenite films become thicker and its volume fraction increase. On the other hand, by increasing the quenching temperature, carbon content of retained austenite increased sharply.
S. Torkian, A. Shafyei, M.r. Toroghinejad, M. Safari,
Volume 35, Issue 3 (12-2016)
Abstract

In this paper the effect of deep cryogenic treatment time on microstructure and tribological behavior of AISI 5120 case hardennig steel is studied. The disk shape samples were carburized at 920 C for 6 hours and air cooled; after austenitizing, the samples were quenched in oil.Then immediately after quenching and sanding, the sample were kept in liquid nitrogen for 1, 24, 30 and 48 h and then tempered at 200 C for 2 hours. The wear test was done by ball on disk method using of WC ball at 80 and 110 N load. For characterization of carbides, the etchant solution of CuCl2 (5 gr)+HCl (100 mL) + ethanol (100 mL) was used. The hardness of samples before and after of tempering was measured by vicers method at 300 N load.. The amount of retained austenite was measured by X Ray Diffraction method. For 1DCT and 24DCT samples it was about 8% and 4%; in the other samples, the retained austenite peal was so decreased that it was not visible. The result showed that the hardness increases by deep cryogenic treatment in all speciments. While wear resistance increases in 1DCT and 24DCT samples, it decreases for 30DCT and 48DCT samples in compare with Conventional heat treatment (CHT) sample in both applied loads, such that , 48DCT sample has the least wear resistance. The cause of increament of hardness is due to reduction in amount of retained austenite as a result of deep cryogenic treatment and decreasing in wear resistance after 24 hour, is due to carbide growth and nonhemogenuse distribution in microstructure and then weakening of matrix. So the 24 hour deep cryogenic treatment was the best optimal for AISI 5120 steel.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb