Search published articles


Showing 2 results for S-N Curve

Mr S. A. Razavi, Mr S. F. Ashrafizadeh,
Volume 36, Issue 2 (9-2017)
Abstract

Age hardening processes cause a wide range of changes in 17-4 PH stainless steel properties. Aging at 480ºC for 1 hour (A480-1) and aging at 620ºC for 4 hours (A620-4) are two most applicable heat treatment processes for this alloy. Not only the studies on fatigue behavior of this alloy in these two heat treatment conditions are few, but also the methods of fatigue test were mostly axial. In this study, after microstructure studies, hardness and tension tests, fatigue behavior at A480-1 and A620-4 conditions were evaluated by using a rotational bending fatigue test machine. Tension results showed that yield strength and ultimate tensile strength of A480-1 specimens were 40 percent more than A620-4 specimens. However, elongation of A620-4 specimens was 30 percent more than A480-1 specimens. Fatigue results revealed the endurance limit of aged specimens is 50 MPa more than overaged specimens. Overall results showed that A480-1 condition specimens are more resistant to fatigue than A620-4 condition specimens.
 


M. Ghasemian Malakshah, F. Ashrafizadeh, A. Eslami, F. Fadaeifard,
Volume 38, Issue 2 (9-2019)
Abstract

Since martensitic precipitation hardened 17-4pH stainless steel has been widely used in corrosive environments, evaluation of its corrosion fatigue behavior is important. In this research, after microstructural studies, mechanical, corrosion, fatigue and corrosion fatigue tests were performed on 17-4pH specimens. Fatigue and corrosion fatigue tests were carried out at the  stress ratio of -1 and the  stress frequency of 0.42 Hz (to increase the effect of corrosive solution), and corrosion fatigue tests were conducted in 3.5% NaCl solution, an  environment similar to corrosive sea water. Fatigue limit of 17-4pH stainless steel was 700 MPa in air and 415 MPa in corrosive environment. Comparing the S-N curves of this alloy at the optimal heat treatment cycle in two modes of fatigue and corrosion fatigue revealed the reduction of fatigue limit up to 40 % in the presence of corrosive environment. This reduction was due to the effect of observed corrosion pits on the surface and Damaged passive layer.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb