Search published articles


Showing 2 results for Safety Factor

A. M. Momeni,
Volume 24, Issue 1 (7-2005)
Abstract

Five methods are introduced for design of castellated I beams encased in concrete. One of the methods, plastic analysis, is thoroughly explained and the relevant equations are developed. Eight castellated I beams encased in concrete are made and tested. The theoretical design methods are all compared with the test results and the safety factor for each method is calculated. The results show that the plastic method of analysis and design is the most economical, which also gives a reasonable safety factor against beam failure
S. Shekarian, A. Ghanbari, and M. Sabermahani,
Volume 27, Issue 2 (1-2009)
Abstract

Stability of reinforced slopes is almost always carried out using limit equilibrium methods and controlled by the shear strengths of the slope materials and the extension force of reinforcements. According to limit equilibrium methods, the stability of slopes is assessed by dividing the whole failure wedge into several vertical elements. In order to determine the safety factor of the reinforced slopes, a new approach is proposed based on the inclined slices method. According to this approach, a 4n formulation is introduced which uses fewer unknowns and a simpler formulation to calculate the extension forces of reinforcements and safety factors of the slopes. Additionally, moment and forces equilibrium in all slices are taken into account while the tensile force of each reinforcing element is independently calculated. Comparisons revealed differences at 5 to 10 percent level between analytical results obtained from this method and those of ReSSA software.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb