Search published articles


Showing 2 results for Scaffold.

N. Zakeri, H.r. Rezaie, J. Javadpour, M. Kharaziha,
Volume 39, Issue 4 (2-2021)
Abstract

In recent years, nanoceramics have been used in scaffolds to emulate the nanocomposite with a three-dimensional structure of natural bone tissue. In this regard, polycaprolactone biopolymer is widely used as a scaffold in bone tissue engineering. The goal of this research is to produce porous scaffolds of polycaprolactone - zeolite biocomposite with suitable mechanical, bioactive and biological properties  for bone tissue engineering applications. The nanocomposite scaffolds were synthesized by solvent casting/particulate leaching and freeze-drying approaches. Microscopic investigations showed generation of pores with an average size of 200-400μm after addition of ceramic phase. Energy dispersive X-ray analysis confirmed uniform distribution of ceramic phase in polycaprolactone matrix. FTIR results determined the binding type of zeolite nanoparticles to the polycaprolactone matrix as physical bonding. The results of mechanical tests showed the increase in young’s modulus after addition of ceramic phase (from 0.04 to 0.3 and 3 to 7 MPa, respectively). The hydrophilicity of polycaprolactone increased after adding nanozeolite and more weight loss was observed for scaffold containing 20% zeolite (53.52 6 1.6%) with an increase in the rate of hydroxyapatite formation. The results showed that the prepared scaffolds have potential for cancellous bone tissue engineering application.

F. Fareghdeli, M. Karimi, A. Novin, M. Solati-Hashjin,
Volume 40, Issue 3 (11-2021)
Abstract

One challenge in preparing polymer/ceramic composites is non-uniform ceramic particles distribution in a polymer matrix. This research evaluated the effect of stirring time and temperature on hydroxyapatite (HA) distribution through (polylactic acid) PLA matrix. Therefore, to mix the ceramic suspension with the polymer solution, three temperatures, namely 25, 37, and 45°C and four times including 6, 12, 24 and, 48 h were examined. Fourier-transform infrared spectroscopy (FTIR) analysis was used to investigate the bonds, which showed physical bond formation such as carboxyl-calcium-carboxyl between HA and polymer matrix, influenced on particles distribution. Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDS) were used to observe particles distribution and determine samples homogeneity. To fulfill this goal, each obtained photograph representing the calcium presentation was split into nine equal sections, and a method based on the newly defined index called dispersion factor “α” was used to analyze the distribution. Results showed that the sample prepared at 37°C and 48 h had the topmost homogeneity properties.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb