Search published articles


Showing 2 results for Shape Memory Alloy

A. Ghotbi Varzaneh, P. Kameli, F. Karimzadeh, H. Salamati,
Volume 34, Issue 3 (12-2015)
Abstract

In this investigation, Ni47Mn40Sn13 ferromagnetic shape memory alloy was prepared by mechanical alloying. The metal powders were ball milled in argon atmosphere for 20 hours. X-ray diffraction pattern confirmed formation of crystalline structure of Heusler alloy. As-milled powder samples were sealed in quartz tubes under high vacuum and subjected to heat treatments at 950°C for different time durations. Then, the effect of isothermal ageing on structural, magnetic and electrical properties of samples was investigated. Results of electrical resistance displayed a metal-like behavior around martensitic transformation. The results showed that 16 hours of annealing was the optimal time for producing this alloy which could be an appropriate candidate for magnetic refrigerant.


Z. Jarrahi, Sh. Raygan, M. Pourabdoli,
Volume 37, Issue 4 (3-2019)
Abstract

In this study, boron containing Cu-12wt%Al-4wt%Ni shape memory alloy was prepared by mechanical alloying, pressing and rolling. In this regard, 20 and 40 hour-milled powder was compacted and changed to the bulk alloy by cold pressing, sintering, rolling, heat treatment and quenching. Phase structure, micro-structure, micro-hardness, and transformation temperatures of the prepared samples were studied. It was found that increasing the milling time from 20 to 40 hours led to the rise of the starting temperature of martensite transformation (Ms) from 254 to 264°C. Also, the results showed that adding 0.5 wt.% B decreased the Ms temperature to 211°C and enhanced the micro-hardness from 154 (for the sample without B) to 193  vickers. These alternations were attributed to the fine structure caused by Boron rich precipitations. Moreover, two martenistic transformations with different structures were formed due to the non-homogeneity of the Al concentration in the matrix, which appeared in the form of two different transformation temperatures (Ms) in the Differential Scanning Calorimetry curves.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb