Search published articles


Showing 15 results for Shear

S. M. Haeri, N. Sadati and R. Mahin-Rousta,
Volume 20, Issue 2 (4-2001)
Abstract

In this research, behaviour of clayey soils under triaxial loading is studied using Neural Network. The models have been prepared to predict the stress-strain behaviour of remolded clays under undrained condition. The advantage of the model developed is that simple parameters such as physical characteristics of soils like water content, fine content, Atterberg limits and so on, are used to model the stress-strain behaviour of clays under triaxial loading, without performing exact and time-consuming tests on samples. Results from the network show that neural network is a good tool for prediction of stress-strain behaviour of clayey soils using simple physical characteristics of such soils
D. Mostofinejad and M.davoodnabi,
Volume 21, Issue 1 (7-2002)
Abstract

In most cases, structural engineers assume a concrete floor to be a rigid diaphragm. Although this simplification is in most cases acceptable, it should be noted that such an assumption may be distrusted due to certain problems. Concrete structures with staggered shear walls are among those whose analysis should be conducted with special concern for the behavior of their floor diaphragms. However, in the structures with staggered shear walls, the horizontal shear due to lateral loads is transmitted to the lower stories through the floor diaphragm since the walls are not usually located over each other in consecutive stories. Therefore, the rigidity of the floor diaphragm is of great importance. In the present study, a parametric analysis was performed to investigate the effect of the rigidity of the floor diaphragm on the load-carrying procedure of the structures with staggered shear walls. The investigated parameters were the number of stories, the ratio of length to width of the plan, and the thickness of walls and diaphragms. Furthermore, the study was carried out for both rectangular and I-shaped plans. All analyses were dynamically performed by ANSYS 5.4 using acceleration spectrum recommended by Iranian Building Code Standard No. 2800. Finally, the behavior of these structures and comparison of the frequencies, the maximum lateral displacements and the shear in the walls and columns as the responses of rigid and flexible diaphragms were highlighted and outlined. Keywords: Reinforced concrete, staggered shear wall, load carrying, floor diaphragm, rigidity.
M. R. Banan and A. Fouladi,
Volume 22, Issue 1 (7-2003)
Abstract

This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new element are derived. Since the reference model has a large number of degrees of freedom (especially for nonlinear cases), computation of the equivalent essential parameters of the proposed element is very time consuming, so, a model using only beam elements is also presented. For the super element, a general purpose program is developed that is capable of performing linear and nonlinear analysis of 3D-frames with latticed columns. In order to derive the essential parameters of the proposed super-element, many latticed columns are analyzed while shear deformations are taken into consideration. Using these essential equivalent parameters approximate relations are proposed for the compution of parameters of any latticed column based on geometric characteristics. Finally, to show the accuracy of the proposed element, several examples are presented. Keywords: Finite elements, Super-element, Latticed column, Shear deformations, 3D-frames
A. Shirvani and M. Farzin,
Volume 22, Issue 1 (7-2003)
Abstract

In this paper, shear localization due to strain softening in sidepressed cylinders, is inverstigated. Shear localization causes formation of macroscopic shear bands which can be obsserved in the metallographic cross-section. In this paper, for the first time a method is presented in which a simple two-slice model is used to study the formation of shear bands. The results obtained form this model are in perfect agreement with the results obtatained form experimental works for and micrcrostructures in Ti-6242Si alloy. Keywords: shear Localiation, shear Bands, Two –Slice Model, Titanium Alloy Ti-6242Si
M. Kahrom, K. Alavie and M. M. Jafariean,
Volume 24, Issue 1 (7-2005)
Abstract

Neutral stability limits for wake flow behind a flat plate is studied using spectral method. First, Orr-Sommerfeld equation was changed to matrix form, covering the whole domain of solution. Next, each term of matrix was expanded using Chebyshev expansion series, a series very much equivalent to the Fourier cosine series. A group of functions and conditions are applied to start and end points in the mathematical domain of the solution so as to avoid error accomulation at these points. The scheme ends with two matrices which result from the Orr-Sommerfeld equation. These matrices are solved, in conjunction, with boundary conditions ending up with a curve of neutral points of stability for an assumed velocity profile. Results are compared with other existing numerical methods and experiments, and the accuracy of the method is confirmed.
M.a.rowshanzamir and A. Jafari,
Volume 24, Issue 2 (1-2006)
Abstract

Cohesive-frictional soils are widely used in the construction of embankment structures and due to the method of construction, i.e. applying compactive efforts in the vertical direction in these cases, the occurrence of anisotropy in the soil strength and permeability seems to be inevitable. In this study, attempts have been made to evaluate the shear strength of c-f soils through modifying a large shear box apparatus. Conducting more than 108 direct shear tests, the effects of compaction method and moisture on the shear strength anisotropy of a selected c-f soil (a clayey sand) have then been investigated. According to the test results, firstly strength anisotropy was observed in all the soil specimens and the shear strength in the vertical direction was about 14% to 21% higher than that in the horizontal direction. Secondly, it was found that an increase in the compaction moisture led to an increase in the degree of anisotropy. Furthermore, the anisotropy in the cohesive strength was more pronounced in the specimens with a moisture content higher than the optimum one. The highest degree of anisotropy was observed in the specimens compacted by impacting effort and the lowest one belonged to those with the vibratory compaction.
H. R. Sheibani and H. Bayyat,
Volume 26, Issue 1 (7-2007)
Abstract

A physical model of gabion overflow dams was studied to determine the velocity profile and Reynolds shear stress. Physical tests were done under two different conditions of dam crest, overflow dams with impermeable and with permeable crests. Instantaneous velocity components over dam crest were measured by an ADV (Acoustic Doppler Velocimeter) instrument. This instrument is capable of measuring instantaneous velocity components with frequencies up to 25 Hz. Average velocity components and bed shear stress were extracted from ADV measurements. The results of this research show the effect of crest permeability on velocity and Reynolds shear stress. The magnitude of Reynolds shear stresses, horizontal velocity components, and absolute value of vertical velocity components under the permeable scenario are bigger than those of the impermeable scenario. Velocity distribution over the dam crest is different from the universal logarithmic profile.
D. Mostofinejad and M. Noormohamadi,
Volume 27, Issue 2 (1-2009)
Abstract

Although studies on RC beams under shear have a history record of more than 100 years, many important issues in this context still remain that have evaded attention. The aim of the current study is to study a number of these less investigated aspects of the behavior of RC beams under shear. For this purpose, and based on the modified compression field theory, a computer program has been written to study the effects of transverse and longitudinal steel reinforcement and shear span, a/d, on the behavior of RC beams under shear. The results show that the shear capacity of the beam cannot be increased beyond an optimum amount of transverse steel ratio. This paper will try to provide a precise definition of this optimum transverse steel ratio. Another finding of the present study is that increasing tensile longitudinal steel ratio increases the amount of the optimum transverse steel ratio, while increasing a/d decreases the optimum transverse steel ratio.
F. Hosseinabadi, S. M. Zebarjad, M. Mazinani, V. Kiani, H. R. Pourreza,
Volume 30, Issue 2 (12-2011)
Abstract

In this article, the role of nano-size calcium carbonate in penetration resistance of medium- density polyethylene (PE) was investigated through experiments. In order to study the penetration resistance of PE and its nanocomposites, perforation test was carried out. The results of tests showed that penetration resistance depends strongly on calcium carbonate amount. As a matter of fact, addition of CaCO3 to PE increases resistance against penetration as CaCO3 amount reaches to 5 percent of weight. Stereomicroscope was used to evaluate the damage and plastic zone around the perforated area in all the samples including neat polyethylene and its nanocomposites. The plastic zone was measured using an image analysis as an effective technique. The results of image analysis techniques proved that the addition of calcium carbonate to PE makes a damaged zone around the perforated area. The results of microscopic evaluations showed that the area of plastic zone rises as the amount of calcium carbonate increases up to 7.5 percent of weight. By increasing the amount of CaCO3, resistance against penetration decreases more and some micro cracks appear around the perforated area. For further clarification of the fracture mechanism of MDPE nanocomposites, scanning electron microscopy was employed. Fracture surface images showed that when calcium carbonate is higher than 5 percent of weight, agglomeration of nanoparticles occurs, resulting in lower resistance against penetration to the samples.
M.r. Khanzadeh Gharah Shiran, H. Bakhtiari, M. Mohammad Javadi,
Volume 36, Issue 3 (11-2017)
Abstract

In this research, the effect of standoff distance and explosive material thickness on metallurgical features of explosive welding connection of copper to 304 stainless steel has been investigated. Experimental analysis were performed using optical microscopy, scanning electron microscopy, microhardness test and tensile shear strength test. The results indicated that due to severe plastic deformation in welding, both grain elongation and refinement occurred near the connection. Also, increasing of welding parameters led to an increase in the locally melted zones. The results showed that chemical composition of the melted zone consisted of elements of both flyer and base plates. By decreasing the explosive material thickness and standoff distance, the hardness of copper interface zone decreased from 103.4 HV to 99.8 HV. Moreover, increasing the temperature in stainless steel connection led to decreased hardness. As such, the maximum tensile shear strength of 244 MPa was observed  in the sample with 79 mm explosive thickness and 3 mm standoff and the minimum tensile shear strength of about 208 MPa in the sample with 46 mm explosive thickness and 3 mm standoff. By decreasing explosive thickness and standoff, the bond strength decreased, too.
 


M. T. Asadi Khanouki, R. Tavakoli , H. Aashuri,
Volume 38, Issue 2 (9-2019)
Abstract

In this research, the effect of temperature on the mean size of fracture surface features, as well as the relation between fracture surface morphologies and ductility of a La-based BMG as a relatively brittle alloy, was systematically investigated. After producing the alloy, three-point bending experiments, over a wide range of temperatures, were conducted on the samples; then the fracture surfaces were analyzed using scanning electron microscopy. The results demonstrated that the width of stable crack growth region (ΔW) was increased upon ductility (δp). Conversely, the mean size of the features on both stable (Ds) and fast (Df) crack growth regions and also, shear offset width (ΔL) were found to decrease with increasing ductility. In this case, the shear band instability was reduced, and the plastic strain could be more homogeneously distributed on the shear bands. The similarity of ΔL and Ds values suggested that the formation of vein pattern was caused by steak-slip behavior and multiple-step sliding inside the shear band through the fluid meniscus instability mechanism. Furthermore, the results obtained from correlation between ductility and fracture surface morphologies in the BMG indicated that the size of features was reduced with increasing ductility.

M. Soltani Samani, A. Bahrami, F. Karimzadeh,
Volume 38, Issue 4 (1-2020)
Abstract

In this study, joining of Ni3Al intermetallic compounds using the transient liquid phase (TLP) process with Cu interlayer was investigated. The binding process was carried out in a vacuum furnace at a temperature of 1050 °C for different times of 30, 60, 90 and 120 minutes. The effect of time variation on microstructure and mechanical properties of the joint zone was investigated. The EDS analysis results of the joints proved formation of the athermally solidified zone (ASZ), isothermally solidified zone (ISZ) and diffusion affected zone (DAZ) at different times. After 90 minutes, brittle eutectic phases still exist in the joint line. However, by increasing the process time to 120 minutes, a copper-rich solid solution was formed in the joint line. Maximum hardness was attained in DAZ region and due to formation of more brittle compounds. By increasing the process time to 90 min, the hardness in the joint center-line increased. After 120 min, the hardness in the joint center-line decreased to about 224 HV. Maximum shear strength was achieved to be about 60 MPa at a process time of 30 minutes and due to formation of Ni-rich matrix at the joint. With increasing time to 90 min, the shear strength decreased to about 34 MPa. After 120 minutes and due to formation of copper-rich solid solution as well as disappearance of eutectic compounds, shear strength again increased to about 44 MPa. Investigation of fracture surfaces showed that until 90 minutes, fracture mode was mainly brittle whereas by increasing time to 120 minutes, a more ductile fracture occurred.

M. Jafari, M. Rafiei, H. Mostaan,
Volume 39, Issue 2 (8-2020)
Abstract

In this research, the effect of temperature and time on the properties of AISI420/SAF2507 dissimilar joint produced by transient liquid phase bonding process was investigated. A BNi-2 interlayer with 25 μm thickness was inserted between two dissimilar steel samples. The bonding process was performed at 1050 oC and 1100 oC for different bonding times. The microstructures of the joints were studied using optical microscope, scanning electron microscope and energy dispersive X-ray spectroscopy. Microhardness and tensile shear strength of bonded samples were investigated. Isothermal solidification was completed for the joints bonded at 1050 oC and 1100 oC for 45 min and 30 min, respectively. ASZ and ISZ areas of the bonding zone at the bonding temperature of 1050 oC indicated the highest (520 HV) and the lowest (300 HV) microhardness values, respectively. Sample bonded at 1050 oC for 1 min indicated the lowest tensile strength (196 MPa) and sample bonded at 1100 oC for 60 min indicated the highest tensile strength (517 MPa).

M. T. Asadi Khanouki,
Volume 39, Issue 3 (12-2020)
Abstract

In this study, the influence of temperature and strain rate on plastic flow of a Zr-based bulk metallic glass (BMG) during the three-point bending test was studied to find a correlation between strain rate sensitivity (m) and flow behavior. The flexural stress-deflection curves revealed two distinct types of dynamics, serrated and non-serrated flow, related to temperature and strain rate. The serrated flow which appeared at temperatures higher than a critical value or strain rates lower than a critical value, was simultaneously due to activation of shear transformation zones (STZs) and time-dependent structural relaxations. Further results indicated negative and positive values of m at temperatures above and below 0.4 Tg, respectively. The main reason for negative strain rate sensitivity was insufficient time of structural relaxation at high strain rates which lead to generation of free volume inside shear bands making the BMG softer. Comparison of STZ activation energy with activation energy for the onset of serration indicated almost equal values and there was a close relationship between serrated flow and STZ operation.

M. Ghalambaz, M. Shamanian, A. M. Eslami, M. Abdollahi, E. Abdoulvand,
Volume 41, Issue 1 (8-2022)
Abstract

This research investigated the bonding properties of AISI 321 austenitic stainless steel from microstructural, mechanical, and corrosion points of view. To obtain the optimal parameters of pulsed current gas tungsten arc welding (PCGTAW), the Taguchi method was used. A cyclic potentiodynamic polarization test evaluated the corrosion resistance of the welded samples. The optimal conditions were achieved when the background current, the pulse current, the frequency, and the percentage of the pulse on time were 50 amps, 140 amps, 5 Hz, and 50, respectively. On the other hand, the analysis of variance showed that the percentage of pulse on time equal to 36 and the background current equal to 46 amperes were the most influential factors on the surface current density of the austenitic stainless steel 321 connection using the PCGTAW process. The mechanical properties were assessed using punch shear testing. In the optimal condition, the maximum shear force and strength were 3200 N and 612 MPa, respectively. The results showed that the most critical factor affecting the bonding properties of 321 steel was the heat input.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb