Search published articles


Showing 3 results for Silicon Carbide

N. Zakeri, S. Otroj, M.r. Saeri,
Volume 34, Issue 3 (12-2015)
Abstract

In this study, the effect of nano-titania addition on the mechanical strength of mullite-bonded alumina-siliconcarbide nano-composites was investigated. To this end, the gel-casting process via nano-silica sol was used for shaping the nano-composite.The firing temperature of composition was determined by use of STA. The compressive and bending strengths of samples were measured after firing at 1300 °C. Besides, the physical properties, phase composition and microstructure of the composites were evaluated after firing. The results showed that the use of nano-titania up to 1 wt.% had a higher effect on improvement of nano-composite mechanical strength. The nano-titania addition led to increasing of mullite phase and higher growth of its needle-like grains. Enhancing of ceramic bonds between grains and the improvement of mechanical strength were obtained by increasing the mullite phase.


A. R. Parvanian, H. R. Salimijazi, M. H. Fathi,
Volume 38, Issue 4 (1-2020)
Abstract

The concentrated solar power (CSP) is one of the renewable energy sources in which solar irradiation heat energy will be used in a steam turbine to generate electrical grid. Solar radiation is absorbed by a solar receiver reactor on the surface of a porous solar absorber. In this survey, synthesis and mechanical/thermal characterization of micro-porous silicon carbide (SiC) absorber to be used in solar reactor is carried out. SiC foams were synthesized and categorized based on three different pore sizes i.e. 5, 12 and 75 ppi. Mechanical behavior and thermal shock resistance of porous foams in the working temperature range for absorber (25-1200 °C) were evaluated. Results revealed that the specific compressive strength (σc/ρ) of foams increase exponentially by a decrement in the porosity percentage and the average pore size. Moreover, for foams with smaller pore size, a considerable decrease in mechanical strength due to thermal shock was observed. This could be due to increase in the number of struts per unit volume i.e. more weak struts to withstand the mechanical loading. So, porous foams with coarser pore sizes were distinguished to be more capable of tolerating thermal shock while serving as solar absorbers.

H. Fallah-Arani, N. Riahi-Noori, S. Baghshahi, A. Sedghi, F. Shahbaz Tehrani,
Volume 40, Issue 4 (3-2022)
Abstract

In this research, the effect of addition of silicon carbide (SiC) nanoparticles on the improvement of the structural, superconductivity, magnetic, and flux pinning properties of high-temperature superconductor Bi1.6Pb0.4Sr2Ca2Cu3O10+θ (Bi-2223) was investigated. The Bi-2223 ceramic superconductor was prepared using the sol-gel method, and silicon carbide nanoparticles were modified by Azobisisobutyronitrile (AIBN). The X-ray diffractometry, feild emission scanning electron microscopy, magnetic susceptibility, and hystersis loop measurements were performed to characterize the synthesized compounds. Based on the magnetic measurements, the superconductivity transition temperature dropped with an increase in the content of nanoparticles. Also, the maximum magnetization, hysteresis loop width, critical current density, and magnetic flux pinning force belonged to the sample with 0.4 wt.% SiC nanoparticles.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb