M. Alizadeh, M. Mirzaei,
Volume 34, Issue 1 (5-2015)
In this study, at first Al-Al2O3 composite powders having different volume fractions of Al2O3 (0, 10, 20, 30 and 40 vol.%) were produced by low energy mechanical alloying, which were used as foam materials. Then, composite foams with 50, 60, and 70 percent of porosity were produced by space-holder technique. Spherical carbamide particles (1-1.4 mm) were used to achieve spherical porosities. In order to investigate the compressive behavior of foams, the compression test with strain rate of 10-3 S-1 was performed on the foam samples. The results showed that the compressive properties depended on the volume fraction of Al2O3 and porosity fraction. Generally, by decreasing the porosity fraction, the compressive properties were improved. The composite foams containing 10 vol.% Al2O3 showed superior compressive properties in comparison to other foams studied in this work.