Search published articles


Showing 5 results for Spinel

S. Otroj, F. Mohammadi, M.r. Nilforushan,
Volume 33, Issue 1 (7-2014)
Abstract

In this paper, the effect of MgCl2 addition on the kinetics of MA spinel formation was investigated. For this purpose, the stoichiometric mixture of MgCO3 and calcined aluminum was calcined at 1100 °C for 1 hr. Then, the calcined composition was wet-milled and after addition of 6% MgCl2 the compositions were pressed and fired at 1300 and 1500 °C for different times. Spinel phase content was determined using semi-quantitative phase analysis. With regard to Jander's equation, the rate constant was calculated, and the activation energy was obtained from Arrhenius equation. The results showed that the addition of MgCl2 leads to the acceleration of the spinel formation reaction. Besides, 55.71 Kcal/mol as the activation energy was calculated for the composition containing 6 wt.% MgCl2 compared with 93.06 Kcal/mol for the composition without MgCl2.
F. Saeidpour, M. Zandrahimi, H. Ebrahimifar,
Volume 38, Issue 1 (6-2019)
Abstract

Crofer 22 APU ferritic stainless steel has been evaluated as one of the favorable materials for utilization in Solid oxide fule cell (SOFC) interconnects. However, there are difficulties in utilizing these metallic interconnects, including the quick  decrease of their electrical conductivity and evaporation of Cr species. To overcome the above problems, the application of protective coatings has been proposed. In this work, Co/Y2O3 composite coatings were deposited onto Crofer 22 APU stainless steels by direct current electrodeposition method. Oxidation and electrical properties of uncoated and coated steels were evaluated. Surface and cross-section of the bare and coated steels were characterized using scanning electron microscopy and X-ray diffraction techniques. Results showed that oxidation rate of the coated specimen was reduced by about 4 times, as compared to the uncoated one after 500 h isothermal oxidation in air at 800˚C. Formation of Co3O4 and MnCo2O4 spinel compositions improved electrical conductivity of the coated sample. After 500 h of isothermal oxidation at 800˚C, ASR value of the Co/Y2O3-coated and uncoated steels was 15.8 mΩ·cm2 and 25.9 mΩ·cm2 , respectively.

M. R. Loghman Estarki, H. Ghalibaf Tousi, E. Mohammad Sharifi, H. Sheikh, A. Alhaji,
Volume 38, Issue 4 (1-2020)
Abstract

The purpose of this study was to evaluate the effect of glycyrol (tri-dentate, GLY) and ethylenediamine (double- dentate clay, en) chelating agents on phase and morphology changes of spinel nanoparticles synthesized by sol-gel method. Characterization of samples was performed by X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray spectrometer (EDX). The results showed that both samples synthesized with GLY and en contain cubic spinel phase. The sample synthesized with ethylenediamine has a pyramidal morphology with particle size in the range of 20-25 nm whereas the specimen prepared with glycerol is spherical with particle size in the range of 20-25 nm. Finally, suggested mechanism for morphological changes of spniel nanoparticles was discussed.

S. N. Hosseini, F. Karimzadeh, M. H. Enayati,
Volume 39, Issue 4 (2-2021)
Abstract

The bare and pre-oxidized AISI 430 pieces were screen printed by copper ferrite spinel coatings. Good bonding between the coating and the substrate was achieved by the reactive sintering process of the reduced coating. The energy dispersive X-ray spectroscopy (EDS) analysis revealed that the scale is a double layer consisting of a chromia-rich subscale and an outer Cu/Fe-rich spinel. The results showed that the spinel protection layer not only significantly decreased the area specific resistance (ASR), but also inhibited the subscale growth by acting as a barrier to the inward diffusion of oxygen. ASRs of 19.7 and 32.5 mΩ.cm2, much lower than that of the bare substrate (153.4 mΩ.cm2), at 800 °C after 400 h oxidation were achieved for the bare and pre-oxidized copper ferrite spinel coated samples, respectively. Excellent, stable ASR (20.5 mΩ.cm2) was obtained with copper ferrite coating after 600 h of exposure at 800 °C. The high electrical conductivity of CuFe2O4 and its doping by Mn, the growth reduction of Cr2O3 oxide scale and the good coating to substrate adherence are proposed to be responsible for substantial improvement in electrical conductivity.

Sh. Talebniya, M. R. Saeri, I. Sharifi, A. Doostmohammadi,
Volume 41, Issue 1 (8-2022)
Abstract

Magnetic nanoparticles are of interest in various research fields such as magnetic fluids, catalysts, biotechnology, medicine, information storage, and environmental issues. However, spinel ferrite magnetic nanoparticles with proper magnetic properties could not be used alone in these applications because of their lack of biocompatibility and instability in aqueous solutions. Surface coating is an effective strategy to eliminate or minimize this issue. In this study, FeFe2O4 and ZnFe2O4 spinel ferrites were synthesized using the reverse co-precipitation method under a nitrogen gas atmosphere. The magnetic behavior of the particles, determined by a vibrating magnetometer (VSM) showed the saturation magnet (Ms) values of the FeFe2O4 and ZnFe2O4 spinel. Fourier-transform infrared (FTIR)  spectra showed two high-frequency bands v1 and v2 at about 554-578 and 368-397 cm-1, respectively, which were related to the spinel structure. Finally, the synthesized FeFe2O4 nanoparticles were coated with chitosan and polyethylene glycol (PEG) biopolymers. The TEM and FTIR analysis indicated that the magnetic nanoparticles were uniformly coated by the biopolymers.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb