Search published articles


Showing 3 results for Surface Morphology

M. T. Asadi Khanouki, R. Tavakoli , H. Aashuri,
Volume 38, Issue 2 (9-2019)
Abstract

In this research, the effect of temperature on the mean size of fracture surface features, as well as the relation between fracture surface morphologies and ductility of a La-based BMG as a relatively brittle alloy, was systematically investigated. After producing the alloy, three-point bending experiments, over a wide range of temperatures, were conducted on the samples; then the fracture surfaces were analyzed using scanning electron microscopy. The results demonstrated that the width of stable crack growth region (ΔW) was increased upon ductility (δp). Conversely, the mean size of the features on both stable (Ds) and fast (Df) crack growth regions and also, shear offset width (ΔL) were found to decrease with increasing ductility. In this case, the shear band instability was reduced, and the plastic strain could be more homogeneously distributed on the shear bands. The similarity of ΔL and Ds values suggested that the formation of vein pattern was caused by steak-slip behavior and multiple-step sliding inside the shear band through the fluid meniscus instability mechanism. Furthermore, the results obtained from correlation between ductility and fracture surface morphologies in the BMG indicated that the size of features was reduced with increasing ductility.

M. Zarchi, Sh. Ahangarani ,
Volume 39, Issue 1 (5-2020)
Abstract

The structural and optical properties of polycrystalline silicon films obtained on a silicon wafer by electron beam physical vapor deposition (EBPVD), were studied in this paper. These films were initially amorphous and changed to a crystalline solid phase during annealing. Annealing was performed in an inert gas atmosphere tube furnace at different temperatures. Micro-structure of the films was analyzed to know the relationship between the crystalline / amorphous composition, grain size and characteristics of the films. The results showed a decrease in roughness with increasing annealing temperature and structural density. Moreover, results of Micro-Raman spectrum showed formation and increase of silicon nanocrystals in the annealed condition when the thickness of the coating increased due to structural defects.


R. Bagheri, F. Karimzadeh, A. Kermanpur , M. Kharaziha,
Volume 40, Issue 2 (9-2021)
Abstract

A new method has been presented for the synthesis of copper (Cu)/copper oxide (CuO)-nanoparticles (NPs), based on the process of corrosion and oxidation of Cu-NPs on the surface of the gold electrode by nitric acid. Cu-NPs were deposited on the surface using potentiometric method. The high concentration of Cu-NPs was estimated by Differential Pulse Voltammetry (DPV). The process of growth and distribution of CuO-NPs on the surface of Cu-NPs using structural analysis of Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) showed that nitrate was well absorbed and a sharp hydroxyl peak appeared and a phase of CuO NPs formed on the electrode surface. The surface morphology indicated that the average size reduced from about 150 nm to 50 nm in the presence of nitrate. This can be due to the oxidation of Cu nanoparticles on the surface and reduction of particle size compared to the absence of nitric acid. This simple and low-cost method can be used as a surface modification of antibacterial and active catalyst electrodes.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb