Search published articles


Showing 2 results for Tensile Strength

M. Assadi, S.r. Hosseini,
Volume 35, Issue 2 (9-2016)
Abstract

In the present article, RRA, T73 and T6 heat treatments were carried out to improve mechanical properties of 7075 aluminum alloy and its hardness, tensile and bending strengths were evaluated. For this purpose, solution annealing was performed at 530 ºC for 16 h. For T6 treatment, aging was executed at 150 ºC for 24 h after solution annealing. In T73, aging treatment was done in two stages after solution annealin, at 120 and 180 ºC for 7 and 20 h, respectively. RRA treatment was performed in three stages. The first stage was the same as T6 treatment, the second stage constitutes tempering at 200 ºC for
20 min and in the third stage aging process was repeated like T6 treatment.
Evaluation of the microstructures and fractured surfaces were performed with optical microscopes (OM) and scanning electron microscopes (SEM). Energy dispersive spectroscopy (EDS) was used to study the chemical composition of precipitates. Hardness, tensile and bending strength were evaluated according to ASTM E384-11e1, ASTM B557-06 and DIN 50121 standards. RRA treatment increased tensile strength from 466 to 485 MPa and hardness from 110 to 165 Vickers. After T6 treatment, tensile strength increased from 466 to 505 MPa and hardness from 110 to 160 Vickers. In T73 process, the tensile strength remained almost constant (465 MPa) but yield strength increased from 394 to 410 MPa and hardness decreased from 110 to 84 Vickers. The bending strength increased from 797 to 844, 920 and 1030 MPa in T73, RRA and T6 processes, respectively. By applying RRA process in optimized temperature and time, hardness, tensile and bending strengths of 7075 aluminum alloy were enhanced from 5 to 15% compared to that of T6 and T73 processes.


B. Sharifian, G. H. Borhani, E. Mohammad Sharifi,
Volume 41, Issue 2 (11-2022)
Abstract

In this study, mechanically milled (MM) Al-24TiO2-20B2O3 powder in molten Al7075 matrix was used in order to fabricate in-situ TiB2 and Al2O3 reinforcements in Al7075 matrix. Differential thermal analysis (DTA) examination was adopted to find reaction temperature between milled Al, TiO2, and B2O3 powders. X-Ray Diffraction (XRD) patterns showed the existence of TiB2 and Al2O3 peaks (750 °C at Ar atmosphere) in MM powder. Scanning Electron Microscopy (SEM) results revealed the uniform distribution of TiO2 and B2O3 particles in the aluminum matrix. 6 wt.% MM powder was added to molten Al7075 at 750 °C. The molten Al7075/TiB2-Al2O3 composite was poured in copper mold. The stir casted composites were hot extruded at 465 °C with extrusion ratio of 6:1 and ram speed of 5 mm/s. The microstructures (optical microscopy and TEM) and mechanical properties (hardness and tensile testing) of samples were evaluated. TEM results showed that in-situ TiB2 nanoparticles were formed. The tensile strength of extruded Al7075/TiB2-Al2O3 composite was reached the value of 496 MPa. This result was around four times greater than that of the as cast Al7075 alloy.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb