Search published articles


Showing 3 results for Tungsten

M. Poorkabirian, H. Mostaan, M. Rafiei,
Volume 36, Issue 2 (9-2017)
Abstract

In this research, dissimilar welding between 4130 low alloy steel and austenitic stainless steel 316L has been investigated using Gas Tungsten Arc Welding (GTAW). Two types of filler metals, including ERNiCr-3 and ER309L, were used for this purpose. Moreover, the joint microstructures including the weld metals, heat affected zones and interfaces were characterized by optical and Scanning Electron Microscopy (SEM). The mechanical behavior of the joint was tested by impact and tension tests. Observations by SEM showed that in impact test, the fracture is soft. In the tensile test, the welded sample by ER309L filler metal was fractured from 316L base metal, but welded specimen with ERNiCr-3 was fractured from welded zone. Also, the results showed a dendritic structure in the nickel-based weld metal. No crack was found in the cellular-dendritic microstructure of ER309L weld metal due to the existance of delta ferrite between them.
 


H. Salehi, N. Zhulayi Bakhoda, P. Amiri,
Volume 38, Issue 4 (1-2020)
Abstract

In this research, the optical properties of tungsten disulfide including dielectric function, the static refractive index, the imaginary part of the dielectric function, optical band gap, energy loss spectrum and its magnetic properties have been studied. Calculations have been done by using Quantum Espresso package which is based on density functional theory and pseudo-potential technique. The static refractive indices of this compound at diffrent x and z directions were calculated 3.66 and 2.55, respectively. The amount of optical band gap, obtained from the imaginary part of dielectric function, was estimated to be 1.45 eV. In addition, bulk plasmon energy, obtained from energy loss spectrum at x and z directions, were obtained to be 17.95 eV and 17.25 eV, respectively.

S. Masoomi Ganjgah , M. Abbasi,
Volume 39, Issue 4 (2-2021)
Abstract

This study aims at investigating changes in microstructure and strength of W alloy and Cu bimetals with varying spark plasma sintering (SPS) temperature and percentage of copper in W-Cu-Ni alloy. After SPS of W (12 wt%)-Cu (14 wt%)-Ni (3 wt%) alloy powder into consolidated discs at 1350 ° C, they were spark plasma sintered to copper discs at various temperatures. Assessment of the interface microstructure and shear strength was performed by field emission scanning electron microscpe (FESEM) and shear strength test, respectively. Results indicated SPS is successful in forming a perfect metallic bond with monolithic interface and high shear strength of about 45 MPa in Cu/W-12Cu-3Ni bimetal that is extra high quality and not reported in previous investigations.
 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb