Search published articles


Showing 3 results for Zrb2

M. F. Najafabadi and M. A. Golozar,
Volume 23, Issue 1 (7-2004)
Abstract

In this research work, the possibility of semi industrial production of Al-TiB2 and Al-ZrB2 composites, using reactive slag in a flame furnace have been investigated. For this purpose, commercial pure aluminum and powder mixture of TiO2 (ZrO2) , KBF4 and Na3AlF6 were used. The results showed that using a proper ratio of slag forming materials as well as proper amounts of the above-mentioned compounds make it possible to produce good quality Al-TiB2 and Al-ZrB2 compounds employing the conventional melting equipment such as a flame furnace.
M. Mashhadi, A. Abdollahi, Z. Nasiri,
Volume 33, Issue 2 (3-2015)
Abstract

In this study, ZrB2-HfB2 composite was produced by pressureless sintering method. MoSi2 B4C and SiC particles were used as reinforcement. ZrB2 powder was milled in planetary ball mill apparatus and then reinforcement particles were added to the milled powder. The composite powders were then CIPed and sintered at 2100oC and 2150oC. Scanning electron microscopy (SEM) with an energy dispersive X-ray spectrometer (EDS), flexural test, and resonance frequency method were used to compare the added particle effects on mechanical properties and pressureless sintering behavior of ZrB2-HfB2 composite. The analysis showed that the ZrB2-HfB2-MoSi2-SiCnano composite displays the largest gain in flexural strength. Furthermore, increasing the sintering temperature leads to an increase in flexural strength of samples.
I. Forooghi , M. Mashhadi,
Volume 39, Issue 4 (2-2021)
Abstract

Due to their unique features, Ultra-High Temperature Ceramics (UHTCs) have potential applications in aerospace, military and industry. ZrB2-SiC composite as one of these ceramics has been at the center of researches due to its attractive mechanical, thermal and oxidation resistance. In this study, the effect of ZrC addition on pressureless sintering behavior, mechanical, microstructural and thermal properties of ZrB2-SiC nanocomposite were investigated. For this purpose, micron-sized ZrB2 and ZrC powders and nano-sized SiC powder were used. ZrB2-20vol% SiC nanocomposites with addition of (3, 6, 9, 12, 15) vol% ZrC were sintered by pressureless sintering method at 2100 ºC. The results showed that the addition of ZrC improved relative density, hardness and fracture toughness of ZrB2-20vol% SiC nanocomposite. Optimum properties were obtained in a sample containing 12 vol% ZrC and the relative density, hardness and fracture toughness of this sample were reported to be 99.01%, 16.95 Gpa and 5.43 Mpa.m0.5, respectively. Thermal analysis of the samples showed that by adding ZrC, thermal diffusivity of this nanocomposite reduced. The highest thermal diffusivity at room temperature equaled 35.3 mm2 /s and was obtained for ZS composite.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb