Search published articles


Showing 2 results for Titanium Nitride

M. Godarzi , A. Saidi,
Volume 30, Issue 2 (12-2011)
Abstract

In recent years, much research in the field of advanced materials synthesis using the mechanochemical process has been performed. In this study, Al2O3-TiN nanocomposite was produced by the mechanochemical method and using inexpensive material TiO2 (instead of pure titanium which is too expensive). Also, aluminum and titanium oxide powders were used as raw materials. Milling under N2 atmosphere with 5 atmospheric pressure was performed and the products were evaluated by the SEM and XRD. Milling results showed that in the first stage of the synthesis process, titanium oxide is reduced by aluminum and the process continues, producing titanium reaction with nitrogen. When the Al/TiO2 ratio molar is equal to 1.2 and 1.3, after 20 hours of milling, TiN peaks in the XRD appears. Moreover, the results showed that milling leads to the formation of fine and spherical particles.
B. Khorrami Mokhori, A. Shafyei,
Volume 35, Issue 4 (2-2017)
Abstract

In this research titanium nitride (TiN) films were prepared by plasma assisted chemical vapor deposition using TiCl4, H2, N2 and Ar on the AISI H13 tool steel. Coatings were deposited during different substrate temperatures (460°C, 480 ° C  and 510 °C). Wear tests were performed in order to study the acting wear mechanisms in the high(400 °C) and low (25 °C) temperatures by ball on disc method. Coating structure and chemical composition were characterized using scanning electron microscopy, microhardness and X-ray diffraction. Wear test result was described in ambient temprature according to wear rate. It was evidenced that the TiN coating deposited at 460 °C has the least weight loss with the highest hardness value. The best wear resistance was related to the coating with the highest hardness (1800 Vickers). Wear mechanisms were observed to change by changing wear temperatures. The result of wear track indicated that low-temprature wear has surface fatigue but high-temperature wear showed adhesive mechanism.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb