۱۰ نتیجه برای بافت
احمد ساعتچی، هایبویان و ساموئل هاریس، ،
دوره ۲۰، شماره ۱ - ( ۴-۱۳۸۰ )
چکیده
پوشش روی در یک محلول سولفاتی اسیدی به طریق گالوانواستاتیکی در چگالی جریانهای ۱۰، ۲۰ و ۱۰۰ میلیآمپر بر سانتیمتر مربع روی ورق فولاد ایجاد شد. ورق فولاد مورد استفاده در حالت نورد سرد شده با عدد زبری متوسط ۳۴/۱ میکرون و بافت بلورین (۱۱۱) بود. موقع آبکاری، در چگالی جریان ۱۰ میلیآمپر بر سانتیمتر مربع، در بعضی نمونهها، پتانسیل در حدود ۸۷۰- میلیولت نسبت به الکترود کالومل اشباع (SCE)، شروع به نوسان کرد. در طی این دوره هیدروکسید روی بر روی سطح رشد کرد. پس از گذشت زمان معینی پتانسیل به محدوده راسب شدن روی یعنی ۱۰۲۰- میلیولت نسبت به SCE سقوط کرد. بلورهای روی ابتدا بر روی مناطق خشنتر سطح پدید آمدند و بعد بر روی مناطق صافتر. افزایش چگالی جریان آبکاری باعث کاهش اندازه دانه، تغییر مکانیزم جوانهزنی و تغییر در مورفولوژی و بافت بلوری روی شد
کیوان رئیسی، احمد ساعتچی و محمدعلی گلعذار،
دوره ۲۳، شماره ۲ - ( ۱۰-۱۳۸۳ )
چکیده
مورفولوژی و بافت پوشش رسوب الکتریکی ’روی‘ بر سطوح الکتروپولیش شده فولاد در دانسیته جریانهای کم مورد بررسی قرار گرفت. پوشش ’روی‘ متشکل از کریستالیتهای هگزاگونال است که بر روی همدیگر چیده شده و یک بسته را ایجاد کردهاند. این بستهها در اندازههای مختلف و در جهات مختلف در کنار همدیگر پراکنده شده و پوشش نسبتاً همگونی را بر روی سطح فولاد ایجاد کردهاند. این پوشش فاقد بافت قوی است. با افزایش دانسیته جریان، مورفولوژی پوشش تغییرات عمدهای یافت به طوری که هر دانه دارای یک جهت گیری خاص شد. پوشش در این حالت دارای بافت قوی قاعده (۰۰۰۲) همراه با صفحات با زاویه کم (۱۰۱۳و ۱۰۱۴) است. پوشش حاصل بر روی سطوح فولاد پولیش مکانیکی شده شامل بستههای منفردی از کریستالیتهای ’روی‘ است که در جهات مختلف در کنار هم واقع شدهاند. بافت مشاهده شده در این نوع پوشش شامل دانسیته بیشتری از صفحات با زاویه کم (۱۰۱۳و ۱۰۱۴) همراه با دانسیته کمتری از صفحات قاعده (۰۰۰۲) نسبت به سطوح الکتروپولیش است. علت این تغییرات مورفولوژی و بافت در پوششهای رسوب الکتریکی ’روی‘ با افزایش مقدار پلاریزاسیون کاتدی و آمادهسازی سطح فولاد، وابسته به تأثیرات آنها بر جوانه زنی و رشد است
مهناز عنایتی جزی، مهران صولتی هشجین، علی نعمتی، عالیه امینیان، ارغوان فرزادی،
دوره ۳۲، شماره ۱ - ( ۴-۱۳۹۲ )
چکیده
به منظور بهبود خواص مکانیکی هیدروکسی آپاتیت به عنوان اصلی ترین فاز مینرالی بافت سخت، فاز تقویت کننده ی تیتانیا به ساختار هیدروکسی آپاتیت افزوده شد. نانوکامپوزیت های هیدروکسی آپاتیت/تیتانیا با استفاده از تکنیک رسوب گذاری در جا در محدوده ی دمای اتاق تا Cº ۷۰ با موفقیت سنتز و در ادامه بدنه های متراکمی از آن با استفاده از روش پرس ایزواستاتیک گرم در فشار ۲۰۰ مگا پاسکال و دمای Cº ۱۲۰۰ ساخته شد. ارزیابی خواص مکانیکی بدنه های هیدروکسی آپاتیت/تیتانیا، بر برتری خواص مکانیکی آن ها نسبت به بدنه های آپاتیتی خالص دلالت می کند. تصاویر میکروسکوپ الکترونی روبشی این نانوکامپوزیت ها، نانوساختاری با یکنواختی بالا را چه از لحاظ شیمیایی و چه از لحاظ ساختاری نشان می دهد. با استناد به تصاویر میکروسکوپ الکترونی عبوری ، بسته به ساختار کریستالی تیتانیا، مورفولوژی های متفاوتی برای نانوکامپوزیت های هیدروکسی آپاتیت/تیتانیا حاصل خواهد شد. نتایج آنالیزهای پراش اشعه ی X و انتقال فوریه مادون قرمز تشکیل فرم کریستالی دما بالای تیتانیا (روتایل) را در محدوده ی دمای اتاق و فاز دما پایین آن (آناتاس) را در دمای Cº ۷۰ تایید می نماید.
منیر برادران، سیده سارا شفیعی، فتح الله مضطرزاده، سیده زهرا مرتضوی،
دوره ۳۵، شماره ۳ - ( ۹-۱۳۹۵ )
چکیده
در سالهای اخیر استفاده از نانومواد در داربستهای مهندسی بافت استخوان بهدلیل تقلید از ساختار بافت طبیعی استخوان که دارای یک ساختار نانوکامپوزیتی درهم آمیخته با یک ماتریس سه بعدی است، مورد توجه قرار گرفته است. در این میان، پلیکاپرولاکتان بهعنوان یک زیست پلیمر، درساخت داربستهای مهندسی بافت استخوان مورد استفاده قرار گرفته است. هدف از این پژوهش، ساخت داربست نانوکامپوزیتی پلیکاپرولاکتان/ هیدروکسید دوگانه لایهای با خواص مکانیکی، زیست فعالی و زیستی مناسب برای کاربرد در مهندسی بافت استخوان اسفنجی است. برای ساخت داربستها از ترکیب دو روش فروشویی ذرهای و خشکایش انجمادی و همچنین برای مطالعات سلولی از سلولMG۶۳ (استئوسارکومای استخوان) استفاده شد. تحلیل طیف سنج طول موج انتشاری از نمونهها، توزیع یکنواخت فاز سرامیکی در بستر پلی کاپرولاکتان را تأیید کرد. نتایج بررسی مکانیکی داربستها حاکی از افزایش مدول یانگ بعد از اضافه شدن فاز سرامیکی بود. بررسیهای میکروسکوپی نشان داد که داربستها از تجمع ریزکرهها پس از اضافه شدن فاز سرامیکی حاصل شدند و اندازه تخلخلها بین ۱۰۰ تا ۶۰۰ میکرومتر گزارش شد. همچنین با افزودن فاز سرامیکی آبدوستی پلی کاپرولاکتان افزایش یافت، اما تشکیل هیدروکسی آپاتیت در محیط شبیهسازی شده بدن، بهعلت وجود یون منیزیم بهتأخیر افتاد. ارزیابیهای سلولی، اتصال سلولها و تکثیرشان روی داربستها را تأیید کردند. نتایج نشان میدهد که داربستهای ساخته شده قابلیت کاربرد در مهندسی بافت استخوان اسفنجی را دارند.
مرجان میرحاج، محبوبه محمودی، علی شیبانی،
دوره ۳۶، شماره ۴ - ( ۱۲-۱۳۹۶ )
چکیده
در این تحقیق، داربست کراتین/ پلی کاپرولاکتون/ هیدروکسی آپاتیت HA)) با روش الکتروریسی ساخته شد. سپس تأثیر نانوذرات HAبر خواص داربست B (کراتین۳۳ درصد، پلی کاپرولاکتون۵۰ درصد و هیدروکسی آپاتیت۱۷ درصد) و داربست A (کراتین ۴۰ درصد و پلیکاپرولاکتون ۶۰ درصد) مورد بررسی قرار گرفت. مورفولوژی سطح، گروههای عاملی موجود بر سطح نمونه، درصد تخلخل و سطح ویژه داربستها بهترتیب با میکروسکوپی الکترونی روبشی، طیفسنجی مادون قرمز تبدیل فوریه، روش جابهجایی مایع و آزمون BET ارزیابی شد. متوسط قطر الیاف در نمونه Aو B بهترتیب ۱۸۴ و ۱۰۸ نانومتر محاسبه شد. همچنین، نتایج آزمونها حاکی از افزایش سطح ویژه داربست حاوی نانوذرات HA نسبت به داربست بدون نانوذرات HA تا تقریباً به میزان دو برابر بودند. با بررسی رفتار زیست تخریبپذیری داربستها در محلول بافر فسفات، افزایش میزان کاهش وزن در داربست B مشاهده شد. درصد زندهمانی و چسبندگی سلولهای استخوانی رده سلولی ۲Saos- بر سطح داربست ها با روش MTT بررسی شد و افزایش رشد سلول ها بر سطح داربست PCl/Kr حاوی نانوذرات هیدروکسی آپاتیت مشاهده شد. بنابراین، داربست حاوی نانوذرات هیدروکسی آپاتیت میتواند گزینه مناسبی برای کاربرد درمهندسی بافت باشد.
سرور صادق زاده، رحمت الله عمادی، شیدا لباف،
دوره ۳۷، شماره ۱ - ( ۳-۱۳۹۷ )
چکیده
در سه دهه اخیر سرامیکهای پایه کلسیم- سیلیکاتی بهعنوان انتخاب مناسبی بهدلیل زیستفعالی، زیستسازگاری و توانایی تشکیل استخوان مناسب جهت کاربرد در مهندسی بافت مورد توجه واقع شدهاند. در حال حاضر هاردیستونیت بهعنوان یکی از مواد سرامیکی زیستسازگار و زیستفعال برای کاربردهای پزشکی مورد استفاده قرار میگیرد. در این تحقیق، برای اولین بار پودر و داربست سه بعدی هاردیستونیت با تخلخلهای باز بهترتیب با روش سنتز آلیاژسازی مکانیکی و استفاده از فضاساز ساخته شدند. نانوهاردیستونیت خالص با استفاده از ۱۰ ساعت آسیاکاری و سه ساعت عملیات حرارتی ثانویه در دمای ۸۰۰ درجه سانتیگراد حاصل شد. اندازه بلورکهای پودر و داربست هاردیستونیت بهترتیب ۲±۲۸ و ۱±۷۹ نانومتر اندازهگیری شد. نتایج نشان میدهد که داربستهای نانوساختار هاردیستونیت بهترتیب با استحکام و مدول فشاری ۰۲/۰±۳۵/۰ و ۲۱/۰±۴۹/۱۰ مگاپاسکال، ۱±۸۱ درصد تخلخل و اندازه تخلخل در بازه ۲۰۰-۵۰۰ میکرومتر پس از سه ساعت عملیات حرارتی در دمای ۱۲۵۰ درجه سانتیگراد، با موفقیت سنتز شد. در حین عملیات حرارتی نمک سدیم کلرید(۸۰ درصد وزنی، ۳۰۰-۴۲۰ میکرومتر)، بهتدریج بخار شده و در داربست ایجاد تخلخل میکند. بهمنظور ارزیابی توانایی تشکیل آپاتیت روی داربستها، از آزمون مایع شبیهساز بدن (SBF) استفاده شد. با توجه به نتایج، تشکیل لایه آپاتیت روی سطح داربست میتواند بهعنوان معیاری از زیستفعالی درنظر گرفته شود.
مجید سهرابی، مرجان عباسی، ملک مسعود انصار،
دوره ۳۸، شماره ۱ - ( ۳-۱۳۹۸ )
چکیده
در این پژوهش با استفاده از پلیمرهای زیستتخریبپذیر، داربستهای نانولیفی از الکتروریسی دو نازل شامل پلیکاپرولاکتون، پلیوینیل پیرولیدون و پلیکاپرولاکتون، پلیوینیلالکل و بتا تریکلسیم فسفات بهطور متناوب و لایهبهلایه تولید شد. بعد از تهیه داربست، از آزمونهای میکروسکوپ الکترونی روبشی ((SEM، تورم، تخلخل، خواص مکانیکی و ارزیابی رفتار زیستتخریبپذیری در محلول نمک فسفات با خاصیت بافری، استفاده شد که نتایج آزمونها زیستفعالی و خواص مکانیکی مناسب داربست لایهبهلایه را تأیید میکند. مقادیر جذب آب با افزودن پلیمرهای آبدوست افزایش پیدا میکند و در داربست لایهبهلایه به ۲۱۴±۸۱۱ درصد میرسد که اختلاف معناداری نسبت به پلیکاپرولاکتون خالص دارد. آزمون سنجش سمیت سلولی (MTT) روی داربست لایهبهلایه بعد از گذشت ۳، ۵ و۷ روز کشت سلولهای بنیادی مغز استخوان موش صحرایی (rMSC) درصد بقای سلولی بالای ۸۰ درصد را نشان میدهد و ریختشناسی سلولها روی داربست نشاندهنده قابلیت زیستسازگاری مطلوب سلولها روی داربست است.
سیده سارا شفیعی، مهناز شوندی، یگانه نیک اختر،
دوره ۳۹، شماره ۴ - ( ۱۲-۱۳۹۹ )
چکیده
داربستهای مهندسی بافت، چارچوبهای زیستی هستند که از رشد، تکثیر و تمایز سلولها در بدن حمایت میکنند. در این میان، داربستهای نانولیفی بهشکل مناسبی از لحاظ مکانیکی و زیستی از زمینه خارج سلولی تقلید میکنند. این داربستها نقش مؤثری در بازسازی و ترمیم بافت ایفا میکند. یکی از روشهای تهیه داربستهای نانولیفی با خواص دستکاری شده، افزودن نانوذرات به زمینه پلیمری ( نانوکامپوزیت) است. در این پژوهش، الیاف یکدست از جنس پلیکاپرولاکتون تقویت شده با نانورس هیدروکسید دوگانه لایهای با درصدهای ۰/۱ درصد تا ۱۰ درصد وزنی توسط روش الکتروریسی تهیه شد. افزودن فاز نانورس به فاز پلیمری باعث کاهش قطر الیاف و بهبود خواص مکانیکی شد. بهعلاوه، حضور نانوذرات رسی در بستر پلیکاپرولاکتون بهشکل قابل توجهی موجب افزایش چسبندگی سلولها و تمایز سلولهای چربی شد. نتایج نشان میدهد میتوان از داربستهای الکتروریسی شده پلیکاپرولاکتون تقویت شده با نانوذرات رسی در کاربردهای مهندسی بافت نرم استفاده کرد.
ندا ذاکری، حمیدرضا رضایی، جعفر جوادپور، مهشید خرازیها،
دوره ۳۹، شماره ۴ - ( ۱۲-۱۳۹۹ )
چکیده
در سالهای اخیر استفاده از داربستهای نانوکامپوزیتی پلیمر- سرامیک در مهندسی بافت استخوان بهدلیل شباهت این ساختارها به بافت طبیعـی اسـتخوان، مورد توجه قرار گرفته است. در این میان، پلیکاپرولاکتون در ساخت داربستهای استخوانی مورد توجه است. کامپوزیت کردن پلیکاپرولاکتون با فازهای سرامیکی مانند زئولیت که توانایی بهبود تشکیل استخوان را دارند میتواند منجر به بهبود کارایی این پلیمر در داربستهای استخوانی شود. هـدف از ایـن پـژوهش، سـاخت داربسـت نانوکامپوزیتی پلیکاپرولاکتون - زئولیت با خواص مکانیکی، زیست تخریبپذیری و زیست فعالی مناسب بـرای کـاربرد در مهندسـی بافـت استخوان اسفنجی است. برای ساخت این داربست از دو روش ریختهگری حلال – شستشو ذرات و خشک کردن انجمادی در کنار هم استفاده شد. بررسـیهـای میکروسکوپی نشان داد که انـدازه تخلخـلهـای داربستهای حاصل بـین ۲۰۰ تـا ۴۰۰ میکرومتر است. نقشه توزیع عنصری، توزیع یکنواخت فاز نانوزئولیت را در زمینه پلیکاپرولاکتون تأیید کرد. همچنین با توجه به نتایج طیفسنجی مادون قرمز با تبدیل فوریه نوع اتصال نانوذرات زئولیت به زمینه پلیکاپرولاکتون اتصال فیزیکی تعیین شد. نتایج بررسی خواص مکانیکی داربستها نشاندهنده افزایش مدول یانگ و استحکام فشاری (به ترتیب از ۰/۰۴ تا ۰/۳ و ۳ تا ۷ مگاپاسکال) بعد از اضافه شدن فاز نانوزئولیت به داربستها بـود. با افزودن نانوزئولیت آبدوستی پلیکاپرولاکتون افزایش یافت و کاهش وزن بیشتری مشاهده شد (برای داربست حاوی ۲۰ درصد زئولیت ۱/۶ ± ۵۳/۵۲ درصد)، همچنین تشـکیل هیدروکسـی آپاتیـت در محـیط شبیهسازی شده بدن سرعت گرفت. نتایج نشان میدهد که داربستهای ساخته شده قابلیت کاربرد در مهندسی بافت استخوان اسفنجی را دارند.
فروغ مفید نخعی، محمد رجبی، حمیدرضا بخششی راد،
دوره ۴۰، شماره ۳ - ( ۸-۱۴۰۰ )
چکیده
علم مهندسی بافت در کنار علم پزشکی به احیا و ترمیم بافتها و اندامهای آسیب دیده میپردازد. هدف اصلی استفاده از داربستها، بازسازی مجدد بافتهای بدن است. انتخاب نوع و جنس داربست بهدلیل اینکه درنهایت جایگزین بافت آسیب دیده میشود بسیار مهم است. توسعه مواد داربست کامپوزیتی سرامیک زیستفعال با استحکام مکانیکی بهبود یافته، موضوعی بوده است که مورد توجه مهندسی بافت استخوان قرار گرفته است. در مطالعه حاضر، پس از سنتز پودرهای بتا تریکلسیم فسفات و بریدیجیت بهترتیب با روشهای واکنش حالت جامد و سل ژل، داربست کامپوزیتی بیوسرامیکی بتا تریکلسیم فسفات/ بریدیجیت (۲۵، ۳۵ و ۴۵ درصد وزنی بریدیجیت) با شبکه منافذ بههم پیوسته و مناسب برای بازسازی استخوان با استفاده از روش فضاساز ساخته شد. این مقاله به بررسی تأثیر افزودن مقادیر بالای بریدیجیت بر خصوصیات مکانیکی و بیولوژیکی داربست بتا تریکلسیم فسفات میپردازد. ترکیبهای فازی، ساختار متخلخل، ویژگیهای مکانیکی و ویژگیهای زیستفعالی این داربستها بهترتیب با استفاده از پراش پرتوی ایکس، میکروسکوپ الکترونی روبشی، آزمونهای مکانیکی و زیستفعالی بررسی شد. ارزیابی ریزساختاری داربستهای کامپوزیتی، منافذ بههم پیوسته با محدوده قطر ۶۰۰-۲۰۰ میکرومتر و میانگین اندازه منافذ ۴۲۱/۱۳ میکرومتر؛ با تخلخل حدود ۷۹-۷۵ درصد را نشان میدهد. نتایج نشان داد که استحکام فشاری داربستهای β-TCP/۲۵Bre (۷/۲ مگاپاسکال) در مقایسه با داربستهای (β-TCP/۴۵Bre) (۲/۰ مگاپاسکال) بهدلیل توزیع یکنواختتر بریدیجیت و عدم آگلومره شدن این فاز در مرزدانهها بالاتر است. همچنین طبق نتایج زیستفعالی، غوطهوری در محلول شبیهسازی شده بدن منجر به شکلگیری لایه آپاتیت استخوانی بهصورت پیوسته روی سطح داربستها شده است.