7 نتیجه برای فوم
سیدمحمدحسین میرباقری، رضا تافته، کسری سردشتی،
دوره 30، شماره 1 - ( 4-1390 )
چکیده
هدف از مقاله حاضر بررسی ساختار و میزان جذب انرژی فوم پایه فلزی Al-7%Si-3%SiC به روش متالورژی فشردان پودری، توسط دو عامل حبابزای CaCO3 و TiH2 بهصورت مستقل است. در تولید فوم فلزی از مخلوط پوردرهای آلومینیم، سیلیسیم و کاربید سیلیسیم به عنوان فاز زمینه استفاده شد. فشرده سازی ترکیبات پودری فوق برای رسیدن به پیش ماده- چگال فوم شونده، به کمک پرس سرد و تک محوره با قالب فولادی H13 در فشار 110 MPa، انجام شد و بلافاصله عملیات اکستروژن گرم نمونههای فشرده شده، در دمای 500 درجه سلسیوس انجام گرفت و تسمهای از پیش ماده- چگال با مقطع 24x 12 میلیمترمربع تولید شد. در مرحله بعد به منظور اجرای عملیات فوم سازی، تکههای کوچکی از پیش ماده چگال در قالبهای استوانهای از جنس فولاد زنگ نزن316L ، با قطر 20 و ارتفاع 100 میلیمتر قرار داده شد و در دماها و زمانهای مختلفی در یک کوره الکتریکی تبدیل به فوم فلزی شدند. در مرحله پایانی با برش و پولیش نمونههای فومی که دارای ساختار سلولی پایدار بودند، آزمایشهای متالوگرافی الکترونی SEM و همچنین آزمون فشار، با سرعت حرکت فک. 50mm بر دقیقه، روی نمونههای فومی انجام گرفته و رفتار جذب انرژی آنها با توجه به ساختار فومهای کامپوزیتی مورد مقایسه و تحلیل قرار گرفت. نتایج نشان داد عامل حبابزای CaCO3 در مقایسه با TiH2 باعث افزایش دانسیته حفرهها و پایداری بهتر آنها شده، ولی زمان فرایند طولانیتر از عامل TiH2 است. همچنین میزان جذب انرژی فوم با عامل CaCO3 بیشتر از عامل TiH2 است. ولی در عوض دیوارههای سلولهای فومی تولید شده با عامل TiH2دارای ضخامت نازکتر و زهکشی بهتری هستند.
حمید رضا سلیمی جزی، طیبه - بهزاد، جواد - مستقیمی،
دوره 31، شماره 1 - ( 4-1391 )
چکیده
فوم های فلزی دارای حفره های به هم پیوسته به دلیل قابلیت انتقال حرارت و عبور گاز بالا می توانند در مبدل-های حرارتی دمای بالا و راندمان عالی مورد استفاده قرار گیرند به شرطی که لایه های سطحی قرار داده شده بر روی سطوح خارجی فوم به خوبی به فوم متصل شده باشند. در این تحقیق یک پروسه ی جهت ایجاد لایه سطحی بر روی فوم های نیکلی توسط پوشش حرارتی ابداع شد و لایه هایی از جنس سوپرآلیاژ Inconel 625 بر روی سطوح فوم های نیکلی با اندازه های مختلف (10 , 20 , 40 PPI) ایجاد شده است. در این تحقیق فرآیندهای مختلف پوشش دهی حرارتی شامل HVOF و APS و Wire-Arc مورد استفاده قرار گرفته است. میزان نفوذ لایه سطحی پوشش به داخل حفره های فوم در این پروسه قابل کنترل می باشد. زیرساختار پوشش ایجاد شده, چسبندگی و سطح مشترک بین پوشش و فوم مورد ارزیابی قرار گرفته است. نتایج نشان می دهد که لایه های پوششی با دانسیته بالا و بدون داشتن حفره های متصل به سطح به وسیله هر سه روش پاشش حرارتی با موفقیت ایجاد شده است و پوشش های ایجاد شده با HVOFو Wire-Arc دارای چسبندگی بالاتری نسبت به پوشش های ایجادشده به روش APS به خاطر داشتن تخلخل و ترکیبات اکسیدی کمتر می باشند
مجتبی احمدی، شاهین ابراهیمی، محمد احمدی،
دوره 33، شماره 2 - ( 12-1393 )
چکیده
تولید فوم با ساختار میکروسلولی (اندازه سلولی µm 100-1 و چگالی سلولی بالاتر از cell/cm3 109) از آمیزه پلیکربنات/ اتیلن پروپیلن دیان منومر (PC/EPDM) هدف پژوهش حاضر بوده است. تهیه فوم میکروسلولی از این آمیزه بهدلیل هستهگذاری ضعیف ناشی از چقرمگی بالا بهراحتی امکانپذیر نیست. با این وجود تلاشها برای بهبود فرایند فومشدن در این روش همچنان ادامه دارد. اخیراً، استفاده ازپرکنندههای نانو در صنایع مختلف پلیمر برای رسیدن به بعضی از خواص مطلوب رایج شده است. در این پژوهش امکان استفاده از نانولولهکربنی در فومهای پلیمری بهمنظور افزایش نرخ هستهگذاری سلولی مطرح شده است. عملیات فومشدن به روش ناپیوسته و توسط عامل فومزای
دیاکسیدکربن فوقبحرانی انجام شد. نتایج نشان داد که نانولولهکربنی در زمینه پلیمری بهصورت عامل هستهزا عمل میکند و نرخ هستهگذاری سلولی را افزایش میدهد. همچنین استفاده از نانولولهکربنی تا 3 درصد وزنی باعث افزایش چگالیسلولی میشود و میانگین اندازه سلولها را کاهش میدهد.
سید محمد حسین میرباقری، میلاد دانشمند، سید یوسف طباطبایی،
دوره 33، شماره 3 - ( 12-1393 )
چکیده
هدف از پژوهش حاضر بررسی رفتاریک سازه جاذب انرژی ضربه بر مبنای استفاده از ماده پیشرفتهِ فوم فلزی کامپوزیتی با نگرش به همگنی ساختار سلولی فوم است. لذا در این پژوهش ابتدا داخل لولههای برنجی Cu-Zn30wt.%، با قطر داخلی27 میلیمتر و ضخامت 1 میلیمتر، از طریق فرایند فرمگریپ با فومهای کامپوزیت آلومینیم A356-10vol.%SiC-Xwt.%TiH2 با سه درصد وزنی متفاوت TiH2 به ترتیب 1، 5/1 و 2 پر شد. سپس مجموعه قوطی و فوم فلزی و همچنین هرکدام به طور مجزا، به عنوان یک سازه جاذب انرژی، تحت بار فشاری و محوری قرار گرفت و رفتار چین خوردگی و کمانش پلاستیک پیشروندی آنها برای چگالیهای مختلف فوم بررسی شد. نتایج نشان میدهد با کاهش چگالی فوم آلومینیمی A356-10vol.%SiC، به ترتیب از 93/0 به 88/0 و 43/0 گرم بر سانتیمتر مکعب، میزان جذب انرژی قوطیهای برنجی پرشده با فوم یاد شده، به ترتیب از 12955 به 13465 و سپس به 11192 ژول تغییر مییابد که نشان دهنده جذب انرژی بالاتر نمونه فوم حاوی 5/1 درصد TiH2 با چگالی 88/0 است. همچنین نتایج تحلیل تصویری مقطع طولی فومها با چگالی متفاوت نشان میدهد پارامتر"ضریب جوری" که در پژوهش حاضر توسعه داده شده است به خوبی میتواند اثر غیر همگنی ساختار سلولی فوم را در الگوی کمانش پلاستیک پیشرونده و میزان جذب انرژی لهیدگی نشان دهد.
مسعود گلستانی پور، ابوالفضل باباخانی، سیدمجتبی زبرجد،
دوره 35، شماره 4 - ( 11-1395 )
چکیده
در این پژوهش فوم های آلومینیومی AA356 با مقادیر مختلف از ذرات سیلیسیم کاربید (SiC) به عنوان عامل تقویت کننده و پایدارساز و پودر کلسیم کربنات (CaCO3) بهعنوان عامل فوم ساز با استفاده از روش فوم سازی مستقیم مذاب تولید شد. چگالی محصولات فومی بین 38/0 تا 68/0 گرم بر سانتیمتر مکعب اندازهگیری شد. پس از آن ریزساختار و خواص فشاری فوم های کامپوزیتی AA356/SiCp تولید شده بررسی شد. ارتباط بین تنش مسطح، چگالی، درصد وزنی CaCO3 و کسر حجمی ذرات SiC با قطر متوسط ثابت نیز مورد ارزیابی قرار گرفت. مشخص شد که منحنی تنش-کرنش فشاری محصولات یکنواخت نیست و ظاهری دندان های دارد. از سوی دیگر نشان داده شد که در یک چگالی ثابت، تنش مسـطح با افزایش محتـوای ذرات SiC و کاهـش مقدار پودر CaCO3 مصرفی، افزایش مییابد.
امیر مسعود پروانیان، حمیدرضا سلیمی جزی، محمد حسین فتحی،
دوره 38، شماره 4 - ( 11-1398 )
چکیده
توان خورشیدی تمرکزیافته یکی از منابع انرژی تجدیدپذیر است که در آن از انرژی حرارتی تابش خورشیدی در توربین بخار برای تولید شبکه برق استفاده میشود. تابش خورشیدی بهوسیله یک رآکتور گیرنده خورشیدی و روی سطح یک جاذب تابشی متخلخل جذب میشود. در این پژوهش، تولید و ارزیابی خواص مکانیکی و حرارتی جاذب ماکرومتخلخل کاربید سیلیسیم بهمنظور استفاده در رآکتور خورشیدی مدنظر قرار گرفته است. بر این اساس، فومهای کاربید سیلیسیم تولید و بر اساس اندازه حفرات به سه دسته (5, 12, 75 ppi) دستهبندی شد. رفتار مکانیکی و مقاومت به شوک حرارتی فومهای متخلخل در محدوده دمای کاری جاذب (1200-25 درجه سانتیگراد) ارزیابی شد. نتایج نشان داد که استحکام فشاری ویژه (نسبت استحکام فشاری به وزن) فومها بهصورت اکسپونانسیلی با کاهش درصد تخلخل (ɛ) و اندازه حفرات آنها، افزایش مییابد. همچنین برای فومهای با اندازه حفرات ریزتر، کاهش قابل توجه در استحکام مکانیکی در اثر شوک حرارتی، مشاهده شد. دلیل آن میتواند افزایش تعداد بازوهای با استحکام مکانیکی ضعیف در واحد حجم باشد. لذا از دیدگاه مقاومت مکانیکی، فومهای متخلخل دارای اندازه حفرات درشتتر دارای مقاومت به شوک حرارتی بیشتر برای کاربرد بهعنوان جاذب خورشیدی هستند.
آیدا فایقی نیا، حسین مردی،
دوره 38، شماره 4 - ( 11-1398 )
چکیده
سرباره آمورف فولاد حاوی غلظتهای مختلف ضایعات شیشه (20، 40، 50، 60 و 70 درصد وزنی)، کاربید سیلیسیم (SiC) مخلوط و کامپوزیت حاصل از آنها تهیه شد. بنابر تصاویر میکروسکوپی حرارتی، انقباضات کامپوزیت سرباره - شیشه در دمای 1050 درجه سانتیگراد آغاز شد. در تصاویر میکروسکوپی الکترونی روبشی از ریزساختار کامپوزیت سرباره - کاربید سیلیسیم (عامل فومزا)، تخلخلهای تونلمانند با ابعادی در محدوده 1000-500 میکرون در اثر خروج محصولات گازی ناشی از تجزیه فاز کاربیدی، مشاهده شد. با افزودن شیشه ضایعاتی (تا 50 درصد وزنی) به این کامپوزیت و تفجوشی در دمای 1200 درجه سانتیگراد، اندازه این حفرات با کاهش10 برابری به 50 میکرون رسیده و کروی شدند. با افزایش فاز شیشه، تخلخل کلی در کامپوزیت سرباره – شیشه –کاربید سیلیسیم تا 80 درصد وزنی افزایش و استحکام تا 2/3 مگاپاسکال کاهش یافت. کامپوزیت سرباره – شیشه (با نسبت وزنی مساوی) با چگالی 8/0 گرم بر سانتیمتر مکعب در گروه مواد فومی متخلخل طبقهبندی شد. همچنین وجود فاز شبهولاستونیت در کامپوزیت بعد از تفجوشی گزارش شد.