مهدی خاشعی و مهدی بیجاری،
دوره 26، شماره 2 - ( 10-1386 )
چکیده
در دنیای امروز به کارگیری روشهای کمی پیش بینی در زمینه های مختلف مورد توجه گسترده قرار گرفته است. تغییرات سریع محیطهای ناشناخته در دنیای واقعی و به ویژه بازارهای مالی سبب ایجاد مشکلاتی برای پیش بینی کنندگان به منظور تأمین داده های مورد نیاز شده است. مدلهای میانگین متحرک خود رگرسیون انباشته (ARIMA) دارای محدودیت تعداد داده های گذشته بوده و شبکه-های عصبی مصنوعی (ANNs) نیز به منظور حصول نتایج دقیق احتیاج به داده های زیادی داردن. مدلهای رگرسیون فازی، مدلهایی مناسب در شرایط پیش بینی با داده های قابل حصول کم اند. در این مقاله به منظور برطرف ساختن مشکل مذکور و حصول نتایج دقیقتر، مدلهای میانگین متحرک خود رگرسیون انباشته با رگرسیون فازی ترکیب شده ان. نتایج حاصله از به کارگیری روش ترکیبی در بازار ارز بیانگر کارامدی این روش در پیش بینی بازه تغییرات نرخ ارز بوده است.