جستجو در مقالات منتشر شده


۱۹ نتیجه برای کاربید

نوید زرین فر و علی سعیدی،
دوره ۲۱، شماره ۲ - ( ۱۰-۱۳۸۱ )
چکیده

کاربید تیتانیم به عنوان استحکام بخشی مناسب برای تولید کامپوزیتهای ذره ای زمینه فلزی به کار می رود. یکی از مشکلات استفاده از این کاربید به عنوان استحکام بخش در کامپوزیتهای زمینه مسی، عدم ترشوندگی کاربید تیتانیم در سیستم Cu-TiC است. این خاصیت با کاهش نسبت کربن به تیتانیم در کاربید، بهبود می یابد. در این مقاله، روشی عملی برای بهبود توزیع ذرات کاربید تیتانیم در مس مذاب ارائه شده و برای این منظور بر نسبت C/Ti در کاربید تیتانیم تاکید شده است. مشاهده شد که نسبت C/Ti در مخلوط خام حاوی پودرهای تیتانیم و کربن، با این نسبت در کاربید پس از احتراق برابر است اما در مخلوط خامی که حاوی مس باشد، نسبت C/Ti در کاربید پس از احتراق بیشتر است. با توجه به ارتباط پارامتر شبکه کاربید تیتانیم با نسبت C/Ti در این کاربید و در مخلوط خام، نموداری رسم شد که از طریق آن می توان نسبت C/Ti در مخلوط خام را به این نسبت در کاربید ربط داد. در آلیاژسازهایی که حاوی ۳۰ درصد وزنی مس بوده و نسبت C/Ti در مخلوط اولیه برابر ۱ باشد. پس از احتراق، شبکه پیوسته ای از کاربید تیتانیم با نسبت ۱C/Ti= به دست می آید که قابلیت پخش شدن در مس مذاب را ندارند. با کاهش این نسبت به ۳/۰، ذرات کاربید تیتانیم با نسبت ۵/۰ به دست می آید که به راحتی در مس مذاب پخش می شود. واژگان کلیدی: سنتز احتراقی، کاربید تیتانیم
مرتضی شمعانیان، احمد ساعتچی، مهدی صالحی و توماس نورث،
دوره ۲۱، شماره ۲ - ( ۱۰-۱۳۸۱ )
چکیده

در این تحقیق ریز ساختار و خواص مکانیکی جوشهای اصطکاکی Ti۶Al۴V/(WC-Co) مورد بررسی قرار گرفته است. ریزساختار منطقه مجاور جوش در نمونه تیتانیمی در کلیه حالتها متشکل از فریت سوزنی و هم محور همراه با فاز بتا بوده و در کلیه نمونه ها مخلوط شدن مکانیکی و نفوذ متقابل عناصر در یکدیگر رخ داده است. استحکام شکست جوشهای اصطکاکی Ti۶Al۴V/(WC-Co) با افزایش درصد کبالت موجود در زمینه کاربید تنگستن- کبالت به طور برجسته ای افزایش می یابد. در طی آزمایش خمش جوشهای Ti۶Al۴V/WC-۶wt.%Co ترک در قسمت محیطی فصل مشترک اتصال جوانه زده و به سمت زمینه کاربید تنگستن کبالت (WC-۶wt.%Co) رشد می کند، در حالی که در جوشهای Ti۶Al۴V/WC-۱۱wt.%Co و Ti۶Al۴V/WC-۲۴ wt.%Co پس از جوانه زنی ترک در قسمت محیطی موضع اتصال، ترک در فصل مشترک رشد می کند. واژگان کلیدی: جوشکاری اصطکاکی، آلیاژ Ti۶Al۴V، کاربید تنگستن کبالت، ریزساختار، استحکام شکست
نادر ستوده، علی سعیدی، علی شفیعی و نیکلاس جی ولهام،
دوره ۲۷، شماره ۲ - ( ۱۰-۱۳۸۷ )
چکیده


سعید سوخته‌سرایی، محمدحسین میرباقری و پرویز دوامی، ،
دوره ۲۷، شماره ۲ - ( ۱۰-۱۳۸۷ )
چکیده


فاطمه حسین زاده، حسین سرپولکی،
دوره ۳۲، شماره ۲ - ( ۱۰-۱۳۹۲ )
چکیده

- اهمیت و کاربرد کاربیدها به ‏طور گسترده‏ ای در حال رشد است و این نه تنها از جنبه تجاری، بلکه بر اساس کاربردهای دیرگدازی و استحکامی آن‏هاست. کاربید تیتانیوم سخت ‏ترین کاربید در میان کاربیدهای فلزات واسطه تجاری است. هدف از پژوهش حاضر سنتز نانوذرات کاربید تیتانیوم به روش شیمیایی سل‌ژل با استفاده از فرآوری سل تیتانیا به کمک آلکوکسید تیتانیوم است. برای ساخت سل از تیتانیوم ایزوپروپوکساید(TTIP) به عنوان پیش‏ماده تیتانیوم و ساکارز به عنوان منبع تامین‏کننده‏ی کربن استفاده شده است. به کمک تحلیل XRD، تاثیر اتمسفر کلسیناسیون در بسترهای گرافیت و کک و سپس اتمسفر آرگون و هیدروژن بر محصول نهایی مشخص شد. به کمک تحلیل XRD، تاثیر اتمسفر کلسیناسیون در بسترهای گرافیت و کک و سپس اتمسفر آرگون و هیدروژن بر محصول نهایی مشخص شد. هر چه اتمسفر احیایی‌تر و عاری از اکسیژن و نیتروژن باشد احتمال دستیابی به یک کاربید تیتانیوم با خلوص بالا، بسیار زیادتر می‌شود. در بستر گرافیتی و کک، فازهای اکسی‌کاربیدی و اکسید تیتانیوم حاصل می‌شود اما در اتمسفر آرگون و مخلوط آرگون و هیدروژن محصول نهایی کاربید تیتانیوم است. تاثیر عوامل مختلف مانند نوع ماده اولیه، دما و زمان کلسیناسیون بر استوکیومتری و مقدار کاربید تیتانیوم به کمک تحلیل‌های XRD و SEM مورد مطالعه قرار گرفته شده است. با افزایش دما از ºC۱۱۰۰ به ºC۱۴۰۰، از مقدار فاز اکسی کاربید تیتانیوم (TiCxOy) کاسته می‌شود و در دمای ºC۱۴۰۰ کاربید تیتانیوم خالص سنتز شده است. شرایط بهینه برای سنتز کاربید تیتانیوم نانوساختار در اتمسفر Ar+۲۵%H۲ در دمای ºC۱۴۰۰ و زمان یک ساعت تعیین شده است.
پوریا صفایی، غلامحسین برهانی، سعیدرضا بخشی،
دوره ۳۳، شماره ۱ - ( ۴-۱۳۹۳ )
چکیده

در این پ‍ژوهش از پودرهای خالص مولیبدن، سیلیسیم، آلومینیم و کاربید تیتانیوم برای تولید ترکیب MoSi۲، کامپوزیتMoSi۲/۲۰Vol% TiC، ترکیبات آلیاژی MoSi۲-x Al و کامپوزیت‌های آلیاژی M‏oSi۲-xAl/۲۰Vol%TiC استفاده شد. پودرهای اولیه در نسبت های مشخصی با هم مخلوط و در یک آسیاب مکانیکی فعال سازی شدند. سپس مخلوط پودر فعال شده پرس و عملیات سنتز و زینتر در محدوده ی دمایی ۱۱۰۰ الی ۱۴۰۰ درجه‌ی سانتی گراد بر روی آن انجام شد. از میکروسکوپ الکترونی روبشی برای بررسی میکروساختار و از دستگاه پراش پرتو ایکس برای شناسایی فازها استفاده شد. تاثیر افزودن آلومینیم در تشکیل فازها مورد بررسی قرار گرفت. اضافه کردن آلومینیم در مقادیر بالای ۹ درصد اتمی، علاوه بر آلیاژی کردن دی سیلیساید مولیبدن، موجب تشکیل فاز Mo(Si,Al)۲ در ساختار شد.
رضا تجلی، حمیدرضا بهاروندی، حسین عبدی‌ز‌اده،
دوره ۳۳، شماره ۳ - ( ۱۲-۱۳۹۳ )
چکیده

در این پژوهش سنتز نانو ذرات ZrC به روش سنتز خود پیش‌رونده دما بالا ۱ از مخلوط پودری ZrO۲ ، C، Mg و رقیق کننده NaF یا NaCl بررسی شد. تاثیر مقادیر مختلف مواد اولیه، زمان آسیاب کاری، ترکیب رقیق کننده مورد استفاده و هم‌چنین اسیدشویی بر سنتز ZrC بررسی شد. تحلیل پراش اشعه ایکس۲ نشان داد که مقدار بهینه منیزیم و فلورید سدیم برای سنتز ZrC به ترتیب برابر با ۸/۲ مول و ۲ مول است. آسیاب‌کاری به مدت زمان ۱۲۰ دقیقه باعث کاهش فاصله نفوذی میان مواد اولیه و افزایش پیشرفت واکنش احتراقی شد. تحلیل‌های پراش اشعه ایکس و میکروسکوپ الکترونی روبشی۳ نشان دادند که رقیق کننده NaF نسبت به NaCl باعث کاهش بیش‌تری در اندازه ذرات ZrC و افزایش پیشرفت واکنش احتراقی می‌شود. نمونه‌های سنتز شده به منظور حذف ناخالصی MgO توسط ۳۷% HCl و به منظور حذفNaF یا NaCL با آب مقطر شستشو داده شدند. مقادیر اندازه ذرات ZrC نمونه‌های مختلف در محدوده ۹۰-۵۰ نانومتر قرار گرفت.
پری‌ناز سیف‌اله‌زاده، مهدی کلانتر، علیرضا مشرقی، سیدصادق قاسمی،
دوره ۳۴، شماره ۳ - ( ۹-۱۳۹۴ )
چکیده

مولایت و آلومینا با ضریب انبساط گرمایی کم و مقاومت به شوک گرمایی خوب جزء سرامیک‌های دمابالا هستند. با وارد نمودن فاز تقویت کننده می‌توان از مزایای فاز سرامیکی چون استحکام گرم استفاده نمود. وجود کاربیدسیلیسیم در زمینه، خواص ترمومکانیکی را بهبود می‌بخشد. در فرایندهایی که به‌طور درجا فازهای موردنظر تشکیل میشود، هزینه‌ها کاهش می‌یابد. در این پژوهش از احیای کربوترمیک کائولینیت و آندالوزیت برای تشکیل کاربیدسیلیسیم به‌شکل درجا در زمینه آلومینا + مولایت استفاده شد. با توجه به نسبت (C/SiO۲) و شرایط ساخت، ویژگی‌های کامپوزیت از نظر ترکیب فازی، ریزساختار و خواص فیزیکی و مکانیکی بررسی شد. نتایج نشان می‌دهد زمانی‌که نسبت C/SiO۲ و دمای پخت در آندالوزیت ۵/۳ و ۱۶۰۰ درجه سانتی‌گراد و درکائولینیت ۵/۵ و ۱۵۵۰ درجه سانتی‌گراد باشد، شرایط بهینه‌ای از تراکم‌پذیری و تبلور فاز کاربیدسیلیسیم به­دست می­آید.


ندا ذاکری، ساسان اطرج، محمدرضا سائری،
دوره ۳۴، شماره ۳ - ( ۹-۱۳۹۴ )
چکیده

در این پژوهش تاثیر استفاده از نانوذرات تیتانیا بر استحکام مکانیکی نانوکامپوزیت­های آلومینا-کاربید سیلیسیم اتصال مولایتی مورد بررسی قرار گرفت. بدین منظور از روش ریخته­گری ژل به­کمک سل نانوسیلیس برای شکل دهی این نوع نانوکامپوزیت­ها استفاده شد. دمای پخت ترکیب توسط تحلیل گرمایی مشخص شد و پس از پخت در دمای °C ۱۳۰۰ استحکام‌های فشاری و خمشی نانوکامپوزیت مورد ارزیابی قرار گرفت. هم‌چنین خواص فیزیکی، ترکیب فازی و ریزساختار ترکیبات پس از پخت مورد بررسی قرار گرفت. نتایج نشان داد که استفاده از نانو تیتانیا تا مقدار ۱ درصد وزنی تاثیر زیادی بر بهبود استحکام مکانیکی این نوع نانوکامپوزیت‌ها دارد. افزودن نانوتیتانیا منجر به افزایش مقدار فاز مولایت و رشد بیش­تر ذرات سوزنی شکل آن می‌شود. ازدیاد اتصالات سرامیکی بین ذرات و در نتیجه بهبود استحکام مکانیکی نانوکامپوزیت به‌دلیل افزایش فاز مولایت حاصل می‌شود.


سیما ترکیان، علی شفیعی، محمدرضا طرقی نژاد، مرتضی صفری،
دوره ۳۵، شماره ۳ - ( ۹-۱۳۹۵ )
چکیده

در این پژوهش تاثیر زمان عملیات زیر صفر روی رفتار تریبولوژیکی و ریزساختار فولاد سخت شونده سطحی ۵۱۲۰AISI ، مورد بررسی قرار گرفته است. به این منظور نمونه­های دیسکی شکل در دمای ۹۲۰ درجه ‌سانتی‌گراد به مدت ۶ ساعت کربن‌دهی و در هوا خنک شدند و پس از آستنیته­کردن درروغن سرمایش شدند؛ سپس بلافاصله پس از سرمایش و سنباده زنی، نمونه‌ها به مدت ۱، ۲۴، ۳۰ و ۴۸ ساعت در نیتروژن مایع نگهداری شدند و در دمای ۲۰۰ درجه ‌سانتی‌گراد به‌مدت ۲ ساعت بازگشت شد. آزمون سایش به روش گلوله روی دیسک با استفاده از ساچمه کاربید تنگستنی با دو بار ۸۰ و ۱۱۰ نیوتن انجام شد. به‌منظور مشاهده‌ کاربید‌ها از محلول کلرید مس (۵ گرم)+ هیدروکلریک اسید (۱۰۰ میلی‌لیتر) + اتانول (۱۰۰ میلی‌لیتر) استفاده شد. سختی نمونه­ها به روش ویکرز با بار ۳۰۰ نیوتن قبل و بعد از بازگشت اندازه‌گیری شد. درصدآستنیت باقی‌مانده از روش تفرق اشعه X محاسبه شد؛ میزان آستنیت باقی‌مانده در نمونه CHT، ۸ درصد، ۱DCT، ۴ درصد و در بقیه­ی نمونه­ها به میزانی کاهش یافته است که در الگوی پراش پیکی مشاهده نشد. نتایج نشان داد که عملیات زیر صفر عمیق منجر به افزایش سختی در تمام نمونه‌ها شده و میزان مقاومت سایشی در نمونه‌ها در هر دو بار اعمالی ۸۰ و ۱۱۰ نیوتن، در زمان­های ۱ و ۲۴ ساعت نسبت به نمونه عملیات زیر صفر نشده افزایش و در نمونه‌های ۳۰ و ۴۸ ساعت عملیات زیر صفر شده کاهش یافته است؛ به­گونه­ای که نمونه­ی ۴۸ ساعت عملیات زیر صفر شده دارای کمترین مقاومت سایشی است. علت افزایش سختی نمونه­ها به‌دلیل کاهش میزان آستنیت باقی‌مانده در اثر عملیات زیر صفر عمیق و دلیل کاهش مقاومت سایشی نمونه­ها پس از ۲۴ ساعت، رشد کاربید­ها و توزیع غیریکنواخت آن در ریز­ساختار و در نتیجه ضعیف شدن زمینه بوده است؛ بنابراین مدت زمان ۲۴ ساعت عملیات زیر صفر عمیق بر فولاد ۵۱۲۰ زمانی بهینه است.


محمد متقی، مهدی احمدیان،
دوره ۳۶، شماره ۱ - ( ۳-۱۳۹۶ )
چکیده

در این پژوهش، رفتار سایشی کامپوزیت‌های تجاری WC-۱۰wt%Co (H۱۰FWC-۴۰vol%Co و کامپوزیت‌ WC-۴۰vol%FeAl-B با مقادیر مختلف بور (صفر- ppm۱۰۰۰) در دمای بالا به‌روش پین روی دیسک بررسی شد. آزمون‌های سایش تحت بار ۴۰ نیوتن و طی مسافت ۱۰۰ متر و در سه دمای محیط، ۲۰۰ و ۳۰۰ درجه سانتی‌گراد انجام شدند. سطوح سایش به‌وسیله میکروسکوپ الکترونی روبشی مورد بررسی قرار گرفت. نتایج نشان داد که مقاومت سایشی همه کامپوزیت‌ها با افزایش دمای آزمون، کاهش می‌یابد. کامپوزیت WC-۴۰vol%FeAl بدون بور کمترین مقاومت سایشی را در همه دماها نشان می‌دهد. با حضور بور تا ppm ۵۰۰ در زمینه آلومیناید آهن، مقاومت سایش دما بالای این کامپوزیت‌ها بهبود می‌یابد و مکانیزم سایش از جدایش ذره به خراشان تغییر پیدا می‌کند. بور با افزایش میزان چقرمگی این کامپوزیت‌ها و افزایش شکل‌پذیری آلومیناید آهن منجربه بهبود پیوند فصل مشترک زمینه آلومیناید آهن و ذرات کاربید تنگستن و بنابراین افزایش مقاومت سایشی این کامپوزیت‌ها می‌شود. کامپوزیت WC-۴۰vol%(FeAl-۵۰۰ppmB) مقاومت به سایش در دمای بالای بیشتری نسبت به WC-۴۰vol%Co و WC-۱۰wt%Co تجاری دارد.
 


آفاق پناهی، معصومه سیف اللهی، سید مهدی عباسی، سید مهدی قاضی میرسعید،
دوره ۳۷، شماره ۲ - ( ۶-۱۳۹۷ )
چکیده

هدف از پژوهش حاضر، ارزیابی تأثیر افزودن جزئی منیزیم بر رفتار مکانیکی دما بالا و تغییرات ریزساختاری سوپرآلیاژ Hastelloy X است. نتایج نشان می‌دهد که با افزایش منیزیم از صفر تا  ppm۴۷، اندازه دانه از ۶۴ به ۳۸ میکرومتر کاهش و میزان کسر حجمی کاربیدها از ۲/۲ به ۶/۴ درصد افزایش یافته است. همچنین منیزیم توزیع ذرات کاربیدی در زمینه را از درشت و پیوسته به‌صورت مجزا تغییر داده است. منیزیم با مکانیزم جدایش در مرزدانه و در مرز کاربید/ زمینه منجر به تغییر ترکیب شیمیایی کاربیدها شده و خواص مکانیکی آلیاژ را تحت تأثیر قرار می‌دهد. افزایش منیزیم از صفر تا ppm ۴۷ باعث افزایش استحکام کششی از ۳۰۹ به ۳۴۵ مگاپاسکال، کاهش داکتیلیته و افزایش عمر گسیختگی از ۱۶ به ۳۰ ساعت شده است. اندازه دانه و میزان کاربیدها عوامل تأثیرگذاری در میزان عمر گسیختگی است و در این پژوهش افزایش میزان کاربیدها در اثر افزودن منیزیم مکانیزم غالب بر افزایش عمر گسیختگی است.
 

مهدی سمیعی زفرقندی، سید مهدی عباسی،
دوره ۳۸، شماره ۲ - ( ۶-۱۳۹۸ )
چکیده

در این پژوهش، رفتار تغییر شکل­ سوپرآلیاژ پایه کبالت Haynes ۲۵ در محدوده دمایی ۱۲۰۰-۹۵۰ درجه سانتی‌گراد از طریق آزمایش کشش گرم در نرخ کرنش ۱/۰ بر ثانیه بررسی می‌شود. بررسی‌های ترمودینامیکی نشان داد که دو نوع کاربید M۲۳C۶ و M۶C به‌ترتیب در محدوده دمایی زیر ۱۰۰۰ درجه سانتی‌گراد و بالای ۱۰۵۰ درجه سانتی‌گراد در آلیاژ Haynes ۲۵ پایدار هستند. منحنی­های تنش- کرنش حاکی از یک روند غیرعادی میزان کرنش شکست برای آلیاژ گفته شده بود، بدین ترتیب که با افزایش دما از ۹۵۰ به ۱۰۵۰ درجه سانتی‌گراد کرنش شکست کاهش و با افزایش مجدد دما افزایش یافت. ملاحظه شد که در محدوده دمایی حدود ۱۰۵۰ درجه سانتی‌گراد افزایش کسرحجمی کاربیدهای M۶C غنی از تنگستن، سبب کاهش میزان انعطاف­پذیری آلیاژ می­شود. همچنین بررسی­ های ریزساختاری نشان داد که در دمای ۱۱۵۰ درجه سانتی‌گراد دانه ­های تبلور مجدد دینامیکی در اطراف کاربیدها و مرزهای اولیه جوانه ­زده و رشد کرده­اند. وقوع تبلور مجدد دینامیکی سبب بهبود انعطاف­ پذیری از طریق مکانیزم ریزدانه ­سازی می­ شود. بنابراین دمای ۱۱۵۰ درجه سانتی‌گراد بالاترین میزان انعطاف­پذیری را نسبت به دیگر دماها از خود نشان داد.

امیر مسعود پروانیان، حمیدرضا سلیمی جزی، محمد حسین فتحی،
دوره ۳۸، شماره ۴ - ( ۱۱-۱۳۹۸ )
چکیده

توان خورشیدی تمرکزیافته یکی از منابع انرژی تجدیدپذیر است که در آن از انرژی حرارتی تابش خورشیدی در توربین بخار برای تولید شبکه برق استفاده می‌شود. تابش خورشیدی به‌وسیله یک رآکتور گیرنده خورشیدی و روی سطح یک جاذب تابشی متخلخل جذب می‌شود. در این پژوهش، تولید و ارزیابی خواص مکانیکی و حرارتی جاذب ماکرومتخلخل کاربید سیلیسیم به‌منظور استفاده در رآکتور خورشیدی مدنظر قرار گرفته است. بر این اساس، فوم‌های کاربید سیلیسیم تولید و بر اساس اندازه حفرات به سه دسته (۵, ۱۲, ۷۵ ppi) دسته‌بندی شد. رفتار مکانیکی و مقاومت به شوک حرارتی فوم‌های متخلخل در محدوده دمای کاری جاذب (۱۲۰۰-۲۵ درجه سانتی‌گراد) ارزیابی شد. نتایج نشان داد که استحکام فشاری ویژه (نسبت استحکام فشاری به وزن) فوم‌ها به‌صورت اکسپونانسیلی با کاهش درصد تخلخل (ɛ) و اندازه حفرات آنها، افزایش می‌یابد. همچنین برای فوم‌های با اندازه حفرات ریزتر، کاهش قابل توجه در استحکام مکانیکی در اثر شوک حرارتی، مشاهده شد. دلیل آن می‌تواند افزایش تعداد بازوهای با استحکام مکانیکی ضعیف در واحد حجم باشد. لذا از دیدگاه مقاومت مکانیکی، فوم‌های متخلخل دارای اندازه حفرات درشت‌تر دارای مقاومت به شوک حرارتی بیشتر برای کاربرد به‌عنوان جاذب خورشیدی هستند.

آیدا فایقی نیا، حسین مردی،
دوره ۳۸، شماره ۴ - ( ۱۱-۱۳۹۸ )
چکیده

سرباره آمورف فولاد حاوی غلظت‌های مختلف ضایعات شیشه (۲۰، ۴۰، ۵۰، ۶۰ و ۷۰ درصد وزنی)، کاربید سیلیسیم (SiC) مخلوط و کامپوزیت حاصل از آنها تهیه شد. بنابر تصاویر میکروسکوپی حرارتی، انقباضات کامپوزیت سرباره - شیشه در دمای ۱۰۵۰ درجه سانتی‌گراد آغاز ‌شد. در تصاویر میکروسکوپی الکترونی روبشی از ریزساختار کامپوزیت سرباره - کاربید سیلیسیم (عامل فوم‌زا)، تخلخل‌های تونل‌مانند با ابعادی در محدوده ۱۰۰۰-۵۰۰ میکرون در اثر خروج محصولات گازی ناشی از تجزیه فاز کاربیدی، مشاهده شد. با افزودن شیشه ضایعاتی (تا ۵۰ درصد وزنی) به این کامپوزیت و تف‌جوشی در دمای ۱۲۰۰ درجه سانتی‌گراد، اندازه این حفرات با کاهش۱۰ برابری به ۵۰ میکرون رسیده و کروی شدند. با افزایش فاز شیشه، تخلخل کلی در کامپوزیت سرباره شیشه کاربید سیلیسیم تا ۸۰ درصد وزنی افزایش و استحکام تا ۲/۳ مگاپاسکال کاهش یافت. کامپوزیت سرباره شیشه (با نسبت وزنی مساوی) با چگالی ۸/۰ گرم بر سانتی‌متر مکعب در گروه مواد فومی متخلخل طبقه‌بندی شد. همچنین وجود فاز شبه‌ولاستونیت در کامپوزیت بعد از تف‌جوشی گزارش شد.

ایمان فروغی، مهری مشهدی،
دوره ۳۹، شماره ۴ - ( ۱۲-۱۳۹۹ )
چکیده

سرامیک‌های فوق دما بالا به‌دلیل ویژگی‌های منحصر به فرد، پتانسیل کافی برای کاربرد‌های هوافضایی، نظامی و صنعتی را دارند. یکی از این سرامیک‌ها کامپوزیت ZrB۲-SiC است که با توجه به خواص مکانیکی، حرارتی و مقاومت به اکسیداسیون عالی مورد توجه واقع شده و تحقیقات بسیاری روی آن صورت گرفته است. در این تحقیق، اثر افزودن ZrC بر رفتار تف‌جوشی بدون فشار، خواص مکانیکی، ریزساختاری و حرارتی نانوکامپوزیت ZrB۲-SiC مطالعه شد. در این تحقیق از پودرهای ZrB۲ و ZrC در مقیاس میکرون و پودر SiC در مقیاس نانو استفاده شد. نانوکامپوزیت‌های ZrB۲-۲۰vol% SiC با افزودن ۳، ۶، ۹، ۱۲ و ۱۵ درصد حجمی ZrC، به‌روش بدون فشار و در دمای ۲۱۰۰ درجه سانتی‌گراد تف‌جوشی شدند. نتایج نشان داد، افزودن ZrC موجب بهبود چگالی نسبی، سختی و چقرمگی شکست نانوکامپوزیت ZrB۲-۲۰vol% SiC می‌شود. بهینه خواص در نمونه حاوی ۱۲ درصد حجمی ZrC به‌دست آمد و چگالی نسبی، سختی و چقرمگی شکست این نمونه به‌ترتیب ۹۹/۰۱ درصد، ۱۶/۹۵ گیگاپاسکال و ۵/۴۳ مگاپاسکال بر جذر متر گزارش شد. تجزیه حرارتی نمونه‌ها نشان داد افزودن ZrC موجب کاهش نفوذ حرارتی این نانوکامپوزیت شده است، به‌طوری که بالاترین میزان نفوذ حرارتی دمای محیط برای نمونه فاقد ZrC با مقدار ۳۵/۳ ‌میلی‌متر مربع بر ثانیه گزارش شد.

امید گنجی، سیدعبدالکریم سجادی، مصطفی میرجلیلی، Zhigang Yang،
دوره ۴۰، شماره ۴ - ( ۱۲-۱۴۰۰ )
چکیده

پوشش‌های کاربیدی به‌علت خواص ضدسایشی بسیار خوب، برای افزایش طول عمر قالب‌های آهنگری گرم و سرد و به‌طور کلی ابزارآلاتی که در معرض نیروهای سایشی قرار دارند، استفاده می‌شوند. امروزه، فرآیندهای گوناگونی جهت تولید پوشش‌های کاربیدی به‌کار گرفته می‌شوند که یکی از آنها روش نفوذ واکنشی حرارتی (TRD) با استفاده از حمام نمک مذاب است. از جمله مزایای این روش نسبت به سایر روش‌های پوشش‌دهی، داشتن صرفه اقتصادی است. در این تحقیق، پوشش‌های کامپوزیتی کاربیدی روی فولادهای ابزار SKD-۱۱ و T۱۰ در دمای ۱۰۰۰ درجه سانتی‌گراد، با استفاده از حمام مخلوط اکسید کروم و اکسید وانادیم با نسبت مولی کروم به وانادیم برابر ۰/۶۶ و سپس حمام منفرد اکسید وانادیم تشکیل شد. نتایج آنالیز فازی نشان داد که پوشش‌ها حاوی فازهای کاربید کروم با ترکیب: CrC،وCr۷C۳ و Cr۲۳C۶ و همچنین فازهای کاربید وانادیم با ترکیب: VC،وVC۰,۸۸،وV۶C۵ و V۸C۷ و یک فاز سه‌تایی با ترکیب Cr۲C۲V هستند. نتایج نشان داد که بهترین میزان سختی (HVو۲۰۲۰-۱۸۹۰) و کمترین مقدار ضریب اصطکاک (۰/۱۴) مربوط به پوشش کاربیدی ایجاد شده روی فولاد T۱۰ در حمام دوم اکسید وانادیم است. 

حسام فلاح آرانی، نسترن ریاحی نوری، سعید باغشاهی، آرمان صدقی، فاطمه شهباز طهرانی،
دوره ۴۰، شماره ۴ - ( ۱۲-۱۴۰۰ )
چکیده

در این تحقیق، اثر افزودن نانوذرات کاربید سیلیسیم بر فاز ابررسانای دمابالای (۲۲۲۳-Bi) Bi۱,۶Pb۰,۴Sr۲Ca۲Cu۳O۱۰+θ به‌منظور بهبود خواص ساختاری، ابررسانایی، مغناطیسی و میخکوبی شار مغناطیسی بررسی شده ‌است. ابررسانای سرامیکی ۲۲۲۳-Bi به روش سل- ژل سنتز شد و در ادامه، فرآیند عامل‌‌دار کردن سطح ذرات کاربید سیلیسیم به کمک ترکیب آلی ازو بیس ایزو بوتیرو نیتریل (AIBN) انجام شد. اندازه‌گیری‌های پراش اشعه X، تصویربرداری میکروسکوپی گسیل میدانی، پذیررفتاری مغناطیسی و منحنی هیسترزیس به‌منظور بررسی خواص ترکیبات سنتز شده صورت گرفت. با هدف تحلیل ساختاری، الگوی پراش اشعه ایکس نمونه‌ها با استفاده از نرم‌افزار MAUD، برازش شد. بر این اساس، با افزایش مقادیر نانوذرات کاربید سیلیسیم، فاز مطلوب ۲۲۲۳-Bi کاهش یافته اما ثابت‌های شبکه تغییری نکرده است. این مسئله نشان می‌دهد که نانوذرات، به ساختار شبکه ۲۲۲۳-Bi وارد نشده‌اند. بر طبق اندازه‌گیری‌های مغناطیسی، دمای گذار ابررسانایی با افزایش درصد نانوذرات کاهش می‌یابد. همچنین، بیشترین مقدار مغناطش‌‌پذیری، پهنای حلقه هیسترزیس، چگالی جریان بحرانی و نیروی میخکوبی شار مغناطیسی به نمونه با ۰/۴ درصد وزنی کاربید سیلیسیم، تعلق دارد. 

نوید محمدی، بهنام لطفی،
دوره ۴۱، شماره ۲ - ( ۸-۱۴۰۱ )
چکیده

هدف از انجام این پژوهش، بهبود رفتار فرسایشی آلیاژ اینکونل ۶۲۵ با لایه‌نشانی روکش کامپوزیتی استلایت ۶/ کاربید بور توسط فرایند قوس انتقالی پلاسما بوده است. برای این منظور، از ۵ درصد وزنی ذرات کاربید بور در روکش استلایت ۶ استفاده شد. بررسی‌های ریزساختاری و فازی به وسیله میکروسکوپ نوری، میکروسکوپ الکترونی روبشی نشر میدان (FESEM)، آنالیز عنصری طیف‌سنجی انرژی (EDS) و پراش‌سنجی پرتو ایکس (XRD) انجام شد. تغییرات سختی در طول روکش‌ها با کمک آزمون ریزسختی‌سنجی به‌دست آمد. آزمون فرسایش ذرات جامد با ذرات سیلیکا و در دو زاویه برخورد ˚۳۰ و ˚۹۰ مورد استفاده قرار گرفت. ریزساختار روکش کامپوزیتی شامل محلول جامد کبالت- کروم و کاربیدهای بور، Cr۷C۳ و Cr۲۳C۶ بود و ریزساختار ظریف‌تری نسبت به روکش استلایت ۶ داشت. همچنین فاز نواری شکل  Cr۷C۳ در این روکش مشاهده شد که ناشی از تجزیه بخشی از ذرات کاربید بور بود. با افزودن ذرات کاربید بور، افزایش در سختی روکش حاصل شد. روکش حاوی ۵ درصد وزنی کاربید بور در زاویه برخورد ˚۳۰، مقاومت فرسایشی بیش‌تری نسبت به زیرلایه و روکش استلایتی خالص نشان داد، به‌طوری که میزان کاهش وزن آن، ۲۰ درصد کاهش وزن در زیرلایه اینکونلی و ۳۳ درصد کاهش وزن در روکش استلایتی بود. اما در زاویه برخورد ˚۹۰، اختلاف چندانی در کاهش وزن روکش‌ها و زیرلایه مشاهده نشد. مکانیزم‌های غالب فرسایش برای روکش کامپوزیتی در زاویه برخورد ˚۳۰، برش و جداسازی ذرات تقویت‌کننده از سطح بودند، درحالی‌ که فرورفتگی و ایجاد حفره مکانیزم‌های اصلی تخریب در زاویه برخورد ˚۹۰ بودند. 


صفحه ۱ از ۱     

کلیه حقوق این وب سایت متعلق به نشریه علمی پژوهشی مواد پیشرفته در مهندسی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb