In this article, the vibration analysis of a set of parallel Timoshenko beams connected by intermediate flexible connections, with arbitrary numbers, is studied. The moving load is a vehicle, which is modeled by a two-axle six degrees of freedom system, as a mass-spring-damper system, in a plane motion. For the solution, a new method is proposed which uses a change of variables strategy to decouple the system of differential equations. For this purpose, the stiffness matrix obtained from each column of intermediate connections should have the same normalized eigenvectors. The displacements and the bending moments of the beams and the vehicle due to changes in the stiffness of connections and changes in speeds will be examined. Finally, the validity of the results are measured.