Search published articles


Showing 11 results for Salehi

M. Salehi and A.s. Ayatollahi,
Volume 15, Issue 2 (1-1997)
Abstract

In this research the effect of volume and morphology of eutectic carbides on tribological behaviour of Ni-Hard 4 cast irons have been investigated. Therefore, as a result of the fact that the carbon content effects the carbides morphology of Ni-hard cast irons, the chemical compositions of five different specimens were kept constant with the exception of the carbon content, which was varied from 2.3 to 3.2%. The general composition of these alloys was selected according to Group D Class I of ASTM A532 standard. The microstructure and carbides morphology of homogenized specimens were examined by microhardness testings and metallographic examinations. Metallographic techniques include optical and scanning electron microscopy have been also used to characterize the predominant wear mechanism. The Ni-hard 4 cast iron surfaces worn by a process of plastic deformation and fracture to produce wear debris. SEM examination of worn surface topography and wear debris shows the tendency to plastic deformation and wear decreased as the carbon content of the specimen increased.
M. Shamanian, M. Salehi and F. Ashrafizadeh,
Volume 16, Issue 2 (1-1998)
Abstract

The use of Fe-Al intermetallic compound coatings has been investigated in order to improve the tribological behaviour of carbon tool steel. The coatings were formed by a pack cementation process and subsequently diffusion annealing at 900˚C in an argon controlled atmosphere. The optimum diffusion time was selected on the basis of optimum thickness and tribological behaviour. The microstructure and the phases developed on the surface were identified by metallography, microhardness, X-ray diffraction (XRD), microanalysis (EDX) and glow discharge optical spectroscopy (GDOS) techniques. Experimental results indicate that a three layer coating is formed on the surface of the aluminized specimens, the outermost layer being identified as Fe2Al5 and the underlying layers as FeAl and Fe3Al. A two layer coating was formed on the surface of the aluminized and subsequently diffusion annealed specimen at the optimum time. The FeAl and Fe3Al have been formed on and below the surface, respectively. The results from wear testing indicate that these coatings improve the wear and frictional behaviour of carbon steel significantly. The predominant wear mechanisms of diffusion annealed specimens were identified as delamination and oxidative wear.
S. R. Bakhsi, M. Salehi, F. Ashrafizadeh,
Volume 17, Issue 2 (4-1998)
Abstract

A study for optimizing of siliconizing and borosiliconizing processes on carbon steels has been carried out. The process parameters, i.e, time and powder mixture, were considered for optimization of the case depth, surface quality and the hardness profile. Time and temperature of the processes were 4 hr and 950˚C, respectively. Powder mixture in siliconizing process was 2.5% ferrosilicon, 2.5% NH4Cl and Al2O3, while the optimum simultaneous borosiliconizing process was obtained in a mixture of 90% boronizing powder and 10% siliconizing powder. These powders had already been optimized, individually. This is a depth of layer of about 150μm and maximum hardness value of 600HV0.1 in siliconized steels, and a depth of layer of about 100μm and a hardness value of greater than 3000 HV0.1 in borosiliconized steels. Microscopical tests by light microscopes, XRD and EDAX analyses indicated Fe3Si and Fe5Si3 phases within the surface layers of siliconized steel, and B(FeSi)3, Fe4.9Si2B, FeSi, FeB and Fe2B phases within the surface layers of borosiliconized steels.
M. Salehi,
Volume 18, Issue 1 (4-1999)
Abstract

In this research, tribological behavior of Ti-Ni-P intermetallic coatings on titanium substrates have been investigated under dry reciprocating conditions. Hardness profile testing results exhibit that high surface hardness has been attained and static indentation result shows that the intermetallic coating has better adhesion strength than the conventional ceramic coatings. In this respect, these coatings have been able to protect the substrate under different loading and tribological conditions. The results show that Ti-Ni-P intermetallic coatings produced by diffusion processes have good adhesion to titanium substrate, offer a low coefficient of friction and prevent the galling of titanium to the steel counterface. The effect of increasing thickness was to increase the load-bearing capacity of the coating. Experimental findings also suggest that Ti-Ni-P intermetallic coatings would contribute to the expansion of industrial applications of titanium alloys.
M. H. Fathi, Gh. Feizi, Sb. Moosavi, Gh. Gahanshahi, M. Salehi, A. Saatchi and V. Mortazavi,
Volume 20, Issue 1 (7-2001)
Abstract

Hydroxyapatite coatings have been used on metallic substrates in a variety of applications, including modifying the surface of human implants, bone osseointegration and biological fixation. In this paper, the effects of various kinds of metallic substrate on clinical and pathological results of in vivo tests are presented. Four kinds of endodontic implants i.e, stainless steel, cobalt base alloy, plasma sprayed hydroxyapatite coated stainless steel, plasma sprayed hydroxyapatite coated cobalt base alloy were prapared and implanted in mandibular canine of cats. After a healing period of 4 months, investigation by SEM and histopathological interpretation and evaluation showed significant differences in tissue response and osseointegration between coated and non-coated metallic implants. It was concluded that the results were affected by the kind of metallic substrate . Keywords: Hydroxyapatite coating, Dental endodontic implant, Osseointegration, Corrosion, Stainless steel, Cobalt base alloy
M. Shamanian, A. Saatchi, M. Salehi and T. H North,
Volume 21, Issue 2 (1-2003)
Abstract

The metallurgical and mechanical properties of Ti6Al4V/(WC-Co) friction welds have ben investigated. The microstructure close to the bondline comprised a mixture of acicular and equiaxed α plus β phases. The diffusion of elements in the welded specimens has been detected. The fracture strengths of Ti6Al4V/(WC-Co) friction welds markedly improved when the cobalt content in the (WC-Co) carbide substrate increased. During the three-point bend testing of Ti6Al4V/WC-6wt.%Co welds, the crack initiated at the bondline region at the periphery of the weld and then propagated into the brittle (WC-6wt.%Co) substrate, while with the Ti6Al4V/WC-11 wt.%Co and Ti6Al4V/WC-24wt.%Co welds, the crack initiated and propagated at the bondline region. Keywords: Friction welding, Ti6Al4V alloy, Cemented tungsten carbide, Microstructure, Fracture strength
M. H. Enayati and M. Salehi,
Volume 25, Issue 2 (1-2007)
Abstract

Fabrication and characterization of aluminum matrix composites containing different volume fractions of Ni3Al powder (5-40 Vol%) were investigated. Ni3Al powder was produced by mechanical alloying of elemental nickel and aluminum powder mixture. Al-Ni3Al composite parts were prepared using a powder metallurgy route involving two stages Al and Ni3Al powder mixtures were first compacted under 500MPa and then hot-pressed under 250MPa at 420 oC for 10min. The microstructure and hardness of consolidated parts were investigated by x-ray diffractometery, optical and scanning electron microscopy and hardness measurements. Results showed that consolidated Al-Ni3Al samples included no significant porosity with a nearly uniform distribution of Ni3Al particles. Additionally, structural examinations showed that no significant reaction between Ni3Al and aluminum matrix occurred during sintering process. Al-Ni3Al composites exhibited a higher hardness value compared with pure aluminum sample prepared under identical conditions. The hardness value of Al-Ni3Al composites increased linearly as Ni3Al content increased.
M. R. Forouzan, and I. Salehi,
Volume 26, Issue 1 (7-2007)
Abstract

In this paper, properties of slab deformation in sizing press mill as one of the slab reduction processes in hot rolling mills have been evaluated using the elastoviscoplastic finite element method with explicit formulation. Effect of prarameters such as initial slab width and thickness, reduction, feed pitch, and anvil speed on factors such as dogbone formation, head and tail fishtail profile, width necking at the leading end of slab, and slab edge quality have been studied. Furthermore, a comparison has been made between the two common width reduction methods, i.e. Vertical Rolling (Edging) and sizing Press, in order to determine their differences and the efficiency of each process. The amount of width return (back spread), one of the most important factors related to width reduction efficiency and also slab formation after the first horizontal rolling pass, has been evaluated. Also, in order to validate the applied finite element method, the results obtained have been compared with experimental ones found in the literature. The results show that deformation in sizing press is more favourable and that its efficiency is better than that of the vertical rolling mill.
A. M. Salehizadeh, A. Shafiei,
Volume 38, Issue 2 (2-2020)
Abstract

This paper presents a numerical analysis of granular column collapse phenomenon using a two-dimensional smoothed particle hydrodynamics model and a local constitutive law proposed by Jop et al. This constitutive law, which is based on the viscoplastic behaviour of dense granular material flows, is characterized by an apparent viscosity depending both on the local strain rate and the local pressure. The rheological parameters are directly derived from the experiments. A simple proposed regularization method used in the viscosity relation to reproduce the stopping condition and the free surface of a granular flow where the pressure is disappeared. Pressure oscillation, as the main disadvantage of the weakly compressible SPH method, leads to an inaccurate pressure distribution. In this research, a new algorithm is proposed to remove the nonphysical oscillations by relating the divergence of velocity to the Laplacian of pressure. The simulations based on the proposed SPH algorithm satisfactorily capture the dynamics of gravity-driven granular flows observed in the experiments. The maximum thickness of a granular flowing on a rough inclined plane is obtained based on the local rheology model and compared with the experimental results. The run-out distances and the slopes of the deposits in the simulations showed a good agreement with the values found in the experiments. The results of the simulation proved that the initial column ratio played an important role in spreading the granular mass
O. Bateniparvar, N. Noormohammadi, A. M. Salehi,
Volume 39, Issue 2 (2-2021)
Abstract

In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the complimentary enriching part along with the polynomial bases of the FEM to construct a new set of shape functions in the elements adjacent to the singular point. It will be shown that the use of the combined bases leads to the quality improvement of the solution function as well as its derivatives, especially in the vicinity of the singularity.
H. Salehipour,
Volume 41, Issue 1 (9-2022)
Abstract

In this paper, static buckling of homogeneous beams coated by a functionally graded porous layer with different boundary conditions is investigated based on the Timoshenko beam theory. The principle of virtual work has been used to obtain the governing equations. Two different methods, namely analyticalsolution and numerical solution are used to solve the governing equations and extract the buckling force. The governing equations are coupled as a series of ordinary differential equations. In the analytical solution, these equations are first uncoupled using a series of mathematical operations, and are then solved. The obtained solution has a series of parameters and unknown constants. Using the boundary conditions at the boundaries of the beam, a homogeneous system of equations is extracted, from which the axial buckling force is obtained. In the numerical solution, the generalized differential quadrature method is used to solve the static equations. Finally, the numerical results are presented and the effects of various parameters such as thickness to beam length ratio, porous layer thickness, porosity parameter, etc. on the buckling of the beam are investigated. Comparison of the results obtained from the two analytical and numerical solution methods confirms the accuracy and validity of both methods.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb