Search published articles


Showing 2 results for Namazi

G. Ghassem-Sani and M. Namazi,
Volume 23, Issue 1 (7-2004)
Abstract

Many important problems in Artificial Intelligence can be defined as Constraint Satisfaction Problems (CSP). These types of problems are defined by a limited set of variables, each having a limited domain and a number of Constraints on the values of those variables (these problems are also called Consistent Labeling Problems (CLP), in which “Labeling means assigning a value to a variable.) Solution to these problems is a set of unique values for variables such that all the problem constraints are satisfied. Several search algorithms have been proposed for solving these problems, some of which reduce the need for backtracking by doing some sort of looking to future, and produce more efficient solutions. These are the so-called Forward Checking (FC), Partially Lookahead (PL), and Fully Lookahead (FL) algorithms. They are different in terms of the amount of looking to the future, number of backtracks that are performed, and the quality of the solution that they find. In this paper, we propose a new search algorithm we call Modified Fully Lookahead (MFL) which is Shown to be more efficient than the original Fully Lookahead algorithm
M. Mohieddin Ghomshei, Sh. Namazi,
Volume 41, Issue 1 (9-2022)
Abstract

In this article, mechanical buckling analysis of tapered beams having constant width and variable thickness, made of two-dimensional functionally graded materials is studied. The beam is assumed to be made of metal and ceramic, where their volume fractions vary in both longitudinal and thickness directions based on the power law. The beam is generally subjected to combined concentrated and distributed axial loads. The set of governing equations are derived using the Principle of Minimum total Potential Energy (PMPE), and are solved numerically using Differential Quadrature Method (DQM) for clamped-free boundary conditions. Convergence and accuracy of the presented solution are confirmed for both cases of concentrated and distributed axial loads. The effects of different parameters on the critical buckling load of the beam for both load cases are studied including geometrical parameters, gradation indices in longitudinal and thickness directions, and variation of thickness. Also buckling analysis of the beam under a combination of concentrated load and distributed axial loads of linear, quadratic and exponential types are investigated. Numerical results show that the highest values of the critical buckling load belong to the linear distributed load, and the lowest value is owned by exponential load.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb