جستجو در مقالات منتشر شده


6 نتیجه برای خاشعی

مهدی خاشعی و مهدی بیجاری،
دوره 26، شماره 2 - ( 10-1386 )
چکیده

در دنیای امروز به کارگیری روشهای کمی پیش بینی در زمینه های مختلف مورد توجه گسترده قرار گرفته است. تغییرات سریع محیطهای ناشناخته در دنیای واقعی و به ویژه بازارهای مالی سبب ایجاد مشکلاتی برای پیش بینی کنندگان به منظور تأمین داده های مورد نیاز شده است. مدلهای میانگین متحرک خود رگرسیون انباشته (ARIMA) دارای محدودیت تعداد داده های گذشته بوده و شبکه-های عصبی مصنوعی (ANNs) نیز به منظور حصول نتایج دقیق احتیاج به داده های زیادی داردن. مدلهای رگرسیون فازی، مدلهایی مناسب در شرایط پیش بینی با داده های قابل حصول کم اند. در این مقاله به منظور برطرف ساختن مشکل مذکور و حصول نتایج دقیقتر، مدلهای میانگین متحرک خود رگرسیون انباشته با رگرسیون فازی ترکیب شده ان. نتایج حاصله از به کارگیری روش ترکیبی در بازار ارز بیانگر کارامدی این روش در پیش بینی بازه تغییرات نرخ ارز بوده است.
مهدی خاشعی، فریماه مخاطب رفیعی، مهدی بیجاری،
دوره 31، شماره 1 - ( 4-1391 )
چکیده

مدل های میانگین متحرک خودرگرسیون انباشته فازی (FARIMA) از جمله مدل های بهبودیافته مدل های میانگین متحرک خودرگرسیون انباشته کلاسیک (ARIMA) اند که به منظور مرتفع ساختن محدودیت تعداد داده های مورد نیاز این گونه از مدل ها ارائه شده اند. در این مقاله، به منظور حصول نتایج دقیقتر در شرایط داده های قابل حصول کم، یک مدل ترکیبی از مدل های میانگین متحرک خودرگرسیون انباشته فازی با طبقه بندی کننده های احتمالی، ارائه شده است. نتایج حاصله از بکارگیری روش ترکیبی پیشنهادی در بازارهای ارز (پوند انگلستان، دلار امریکا و یورو همگی در مقابل ریال ایران) بیانگر کارآمدی روش پیشنهادی است، لذا مدل مذکور قابلیت بکارگیری بعنوان ابزار و جایگزینی مناسب برای پیش بینی نرخ ارز، بویژه مواقعی که با داده های اندک سروکار داریم، را دارد.

مهدی خاشعی، مهدی بیجاری، فریماه مخاطب رفیعی،
دوره 32، شماره 1 - ( 4-1392 )
چکیده

پیش بینی از ابزارها و راهکارهای مؤثر به منظور برنامه ریزی و تدوین استراتژی های مالی است. دقت پیش بینی ها از مهمترین فاکتور های مؤثر در انتخاب روش پیش بینی است. امروزه علی رغم وجود روش های متعدد پیش بینی، هنوز پیش بینی های دقیق، به ویژه در بازارهای مالی کار چندان ساده ای نبوده و اکثر محققان درصدد به کارگیری و ترکیب روش های متفاوت به منظور حصول نتایج دقیق ترند. ترکیب مدل های مختلف یا استفاده از مدل های ترکیبی یک راه معمول در غلبه بر محدودیت های روش های تکی و بهبود عملکرد آنهاست. در ادبیات موضوع، روش های ترکیبی متعددی بر اساس مدل های پرسپترون های چندلایه و به منظور رفع نقایص و محدودیت های موجود در این گونه از روش ها طراحی و به کارگرفته شده اند. دراین مقاله، یک روش ترکیبی جدید از پرسپترون های چندلایه با استفاده از شبکه های عصبی احتمالی ارائه شده است. روش پیشنهادی با به کارگیری قابلیت های منحصر به فرد شبکه های عصبی احتمالی در تشخیص نقاط شکست، تغییرات و الگوهای خاص موجود در سری های زمانی مورد مطالعه را بهتر و کامل تر مدل سازی کرده و لذا عملکرد و دقت مدل در پیش بینی سری های زمانی را افزایش می دهد. نتایج حاصله از بکارگیری روش ترکیبی پیشنهادی به منظور پیش بینی نرخ ارز بیانگر کارامدی روش پیشنهادی در افزایش دقت پیش بینی ها بوده است.

مهدی خاشعی، مهدی بیجاری، فریماه مخاطب رفیعی،
دوره 33، شماره 1 - ( 4-1393 )
چکیده

شبکه‌های عصبی پرسپترون چندلایه از مهم‌ترین و پرکاربردترین شبکه‌های عصبی در پیش‌بینی بازارهای مالی هستند. اما این‌گونه از شبکه‌ها، علی‌رغم تمام مزایای منحصر ‌به ‌فردشان، دارای محدودیت‌هایی نیز می‌باشند که از جمله مهم‌ترین آنها می‌توان به محدودیت تعداد متغیرهای ورودی به شبکه‌ اشاره نمود. در شبکه‌های پرسپترون چندلایه برخلاف روش‌های سنتی پیش‌بینی، با افزایش تعداد ورودی‌ها ممکن است عملکرد شبکه کاهش یابد. در ادبیات موضوع، ترکیب مدل‌های مختلف و یا استفاده از مدل‌های ترکیبی یک راه معمول به‌منظور برطرف‌ ساختن محدودیت‌های مدل‌های تکی و بهبود دقت پیش‌بینی‌ها است. در این مقاله با استفاده از نگاشت‌های خودسازمان‌ده که از دقیق‌ترین روش‌های حال حاضر در شناخت و تحلیل فضاهای چندبعدی غیرخطی هستند، یک روش ترکیبی از شبکه‌های پرسپترون چندلایه ارائه گردیده است. در روش پیشنهادی، ورودی‌های شبکه در ابتدا با استفاده از نگاشت‌های خودسازمان‌ده خوشه‌بندی ‌شده و سپس متغیرهای موجود در هر خوشه با توجه به میزان تأثیرگذاری‌‌شان با یکدیگر ترکیب می‌گردند. نتایج حاصله از به‌کارگیری روش پیشنهادی در پیش‌بینی قیمت محصولات فولادی در بورس فلزات تهران بیانگر کارآمدی روش ترکیبی در تقابل با سایر روش‌ها است.

مهدی خاشعی، شیدا تربت،
دوره 37، شماره 2 - ( 12-1397 )
چکیده

بحران‌های مالی موجود در نظام‌های بانکی ناشی از عدم توانایی در مدیریت ریسک‌های اعتباری است. امتیازدهی اعتباری یکی از تکنیک‌های مدیریت ریسک است که ریسک وام‌گیرنده را تحلیل می‌کند. در این مقاله با استفاده از مزایای روش‌های هوش محاسباتی و محاسبات نرم یک روش ترکیبی جدید به‌منظور بهبود مدیریت ریسک‌های اعتباری ارائه شده ‌‌است. در روش پیشنهادی، به‌منظور مدل‌سازی در شرایط عدم‌ قطعیت، پارامترهای شبکه عصبی، شامل وزن‌ها و خطاها، بهصورت فازی در‌نظر گرفته شده‌اند. در این روش، ابتدا سیستم مورد مطالعه با استفاده از شبکه‌های عصبی متامدل‌بندی ‌شده و سپس با به‌کارگیری استنتاجات فازی تصمیم بهینه با بیشترین میزان برتری تعیین خواهد ‌شد. نتایج حاصل از به‌کارگیری روش پیشنهادی بیانگر کارامدی و دقت بالای این روش در تحلیل مسائل امتیازدهی اعتباری است.


مهدی خاشعی، فاطمه چاهکوتاهی،
دوره 38، شماره 1 - ( 5-1398 )
چکیده

امروزه پیش‌بینی تقاضای الکتریسیته به‌عنوان یکی از مهم‌ترین حوزه‌های پیش‌بینی، نقشی اساسی در فرایند تصمیم‌گیری‌های اقتصادی دارد. آنچه که الکتریسیته را از سایر کالاها متمایز می‌سازد عدم امکان ذخیره‌سازی آن در مقیاس وسیع، هزینه‌بر و زمان‌بر بودن ساخت نیروگاه‌های جدید تولید و توزیع برق است. همچنین وجود روند نوسانی و غیرخطی و همچنین ابهام و پیچیدگی در داده‌های الکتریسیته موجب شده که استفاده از مدل‌های معمول پیش‌بینی تقاضای الکتریسیته کارامد نباشند. لذا ارائه مدل‌های جدید با استفاده از ابزارهای هوش محاسباتی و محاسبات نرم و ترکیب مدل‌ها از جمله دقیق‌ترین و پرکاربردترین روش‌های حال حاضر به‌منظور مدل‌سازی پیچیدگی و عدم قطعیت موجود در داده‌ها هستند. لذا در این مقاله یک مدل ترکیبی بهینه موازی با استفاده از ابزارهای هوش محاسباتی و محاسبات نرم، به‌منظور پیش‌بینی بار الکتریکی ارائه می‌شود. روش ترکیبی ارائه شده در این مقاله بر اساس روش‌های خودگرسیون میانگین متحرک انباشته فصلی و سیستم‌های استنتاج فازی- عصبی است. ایده اصلی ارائه روش‌های ترکیبی، استفاده همزمان از مزایای مدل‌های تکی در مدل‌سازی‌ سیستم‌های پیچیده در یک ساختار و همچنین غلبه بر محدودیت‌های مدل‌های تکی است. نتایج حاصل نشان می‌دهد که روش ترکیبی پیشنهادی عملکرد ضعیف‌تری نسبت به سایر روش‌های ترکیبی تکراری شبه بهینه نداشته و همچنین هزینه محاسباتی آن کمتر از این گونه از روش‌ها دارد. علاوه بر این، روش پیشنهادی توانسته است نتایج دقیق‌تری در مقایسه با مدل‌های تشکیل‌دهنده خود و همچنین برخی از روش‌های ترکیبی فصلی به‌دست آورد.


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به روشهای عددی در مهندسی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb

64579f77e436cd7