

ارزیابی خواص اتصال غیرهمجنس فولاد زنگنزن آستنیتی A321 به فولاد کربنی GTAW A537CL1

بهنام صادقی^۱، حسن شریفی^{۱*۲}، مهدی رفیعی^۱

۱- مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.

۲- گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، ایران

(دریافت مقاله: ۱۳۹۵/۰۱/۲۲؛ دریافت نسخه نهایی: ۱۹/۰۸/۱۳۹۵)

چکیده

در این پژوهش ریزساختار و رفتار مکانیکی اتصال غیرهمجنس فولاد زنگنزن آستنیتی AISI 321 به فولاد کربنی ASTM A537CL1 بررسی شد. بدین منظور از روش جوشنکاری قوسی تنگستن-گاز و فلز پرکننده 308L ER با قطر 1/8 میلیمتر استفاده شد. جهت بررسی ریزساختار و مقطع شکست نمونه‌های جوشنکاری شده از میکروسکوپ نوری و میکروسکوپ الکترونی رویشی استفاده شد. همچنین به منظور بررسی خواص مکانیکی اتصال، از آزمون‌های ضربه، کشش و ریزسختی سنجی در راستای عمود بر فلز جوش استفاده شد. نتایج نشان داد که ریزساختار فلز جوش به صورت آستنیتی به همراه فریت اسکلتی است که در برخی از قسمت‌های فلز جوش فریت شبکه‌ای نیز مشاهده شد. در آزمون کشش تمامی نمونه‌ها از فلز پایه فولاد کربنی A537CL1 ASTM و به صورت نرم دچار شکست شدند. فلز جوش مقدار انرژی ضربه بالایی در حدود 205 ژول از خود نشان داد.

کلمات کلیدی: اتصال غیرهمجنس، جوشنکاری GTAW، فولاد زنگنزن آستنیتی، فولاد کربنی، خواص مکانیکی، ریزساختار.

Evaluation of dissimilar joint properties of A321 austenitic stainless steel to A537CL1 carbon steel by GTAW process

B. Sadeghi¹, H. Sharifi^{1,2*}, M. Rafiei¹

1-Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

2-Department of Materials Engineering, Faculty of Engineering, Shahrood University, Shahrood, Iran.

(Received 10 April 2016 ; Accepted 9 November 2016)

* نویسنده مسئول، پست الکترونیکی: sharifi@eng.sku.ac.ir

Abstract

In this research, the microstructure and mechanical behavior of dissimilar joint of AISI 321 stainless steel to ASTM A57CL1 were studied. For this purpose, the GTAW process and ER 308L filler metal with diameter of 1.8 mm were used. In order to study the microstructure and fracture surface of weld samples, optical microscope and scanning electron microscope (SEM) were used. Also, the mechanical behavior of the joint was examined by impact, tension and microhardness tests. It was found that the microstructure of weld metal was austenite with skeletal ferrite. Also in some areas the lacy ferrite was seen. All samples were fractured from ASTM A537CL1 steel with a ductile manner during the tension test. The weld metal indicated high impact energy about 205 J.

Keywords: Dissimilar Joint, GTAW Welding, Austenitic Stainless Steel, Carbon Steel, Mechanical Properties, Microstructure.