Search published articles


Showing 3 results for Ansari

M. Ansaripour, A. Soltanpoor, A. Ghasemi, M.r. Dehnavi,
Volume 2, Issue 1 (Journal OF Welding Science and Technology of Iran 2016)
Abstract

The aim of this study was to evaluate the mechanical properties and corrosion behavior of friction stir welding (FSW) connection of A517 (B) steel plate. Mechanical properties and corrosion behavior of weld zone were evaluated after reaching to optimum FSW microstructure with the lowest martensite phase. Thus, after the identifying phase microstructure by SEM and XRD analysis, mechanical properties were analyzed by micro-hardness and tensile test. Micro hardness data shows slight increases in stir zone (SZ) compared with the base metal (BM); although a reduction of about 17% in hardness of heat-affected zone (HAZ) was sensible. Reduction of hardness in the HAZ was appeared as drop by about 12 percent of the yield strength and 19 percent of ultimate strength compared with BM. SEM images from fracture surface of the tensile sample showed bi-modal distribution of large and small Dimples being sings of softness of HAZ .Comparing corrosion behavior in solution consist of 3.5 wt% of NaCl showed that there was no passive layers to prevent dissolution of the metal in the SZ and BM. while BM and SZ had fairly similar corrosion rates, Difference of 50 mV between corrosion potential of SZ and BM showed that in galvanic condition, corrosion resistance of BM could be lower than SZ.


S. Ansari, E. Ranjbarnodeh, M. Iranmanesh,
Volume 2, Issue 2 (Journal OF Welding Science and Technology of Iran 2016)
Abstract

Studies on welding process of Aluminium weldments shows that post-weld residual stress and deformation are influential on structure efficiency and there are different variable which affect these stresses and deformation. In this study the effect of geometrical variables and welding sequence on residual stresses and deformation in Aluminium H321 have investigated by the finite element software Ansys. Thermo elastic-plastic model was verified by metallography experiment and measurement of post-weld deformation afterward, weld leg, penetration depth and welding sequence were optimized to minimize the distortion. It was concluded that weld-volume increase post-weld distortion and it can be minimize by choosing an appropriate weld sequence


Mr Masoud Ansari Lale, Dr Mir Nariman Yoozbashi, Dr Mohammad Zadshakoyan, Dr Ali Almasi,
Volume 9, Issue 2 (Journal OF Welding Science and Technology 2025)
Abstract

The friction stir spot welding (FSSW) process is a solid-state welding technique recognized as one of the most significant advancements in metal joining over the past decade. In this study, the effects of rotational speed and tool contact time, with a unique design different from previous research, on the microstructure and mechanical properties of 5754 series aluminum alloy were investigated. The workpiece was clamped using a specialized fixture on a radial drilling machine, and welding operations were performed using a FSSW machine at different rotational speeds and various tool contact times. Subsequently, the microstructure, microhardness, and tensile-shear strength of the welded spot region were evaluated. The results showed that increasing the tool rotational speed and prolonging the tool contact time led to an improvement of approximately 105% in the tensile-shear strength. According to statistical analyses, the factors of rotational speed and tool contact time significantly affected the shear strength with a confidence level greater than 95%; however, statistical analyses revealed different results regarding the relationship between rotational speed, contact time, and hardness.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb