Search published articles


Showing 1 results for Pooreskandari

Hamidreza Pooreskandari, Masoud Goodarzi, Rouholah Ashiri,
Volume 9, Issue 2 (Journal OF Welding Science and Technology 2025)
Abstract

Nickel-based superalloys are among the most critical materials used in high-temperature components of gas turbines, where their replacement costs and potential turbine damage necessitate effective protection and repair strategies. Optimizing repair methods to enhance efficiency and reduce costs has therefore been a continuous focus. The aim of this study is to improve the repair process of Inconel 738LC superalloy by reducing the susceptibility to liquation cracking. Activated tungsten inert gas (A-TIG) welding was performed on Inconel 738LC using a welding current of 60 A. Titanium dioxide (TiO₂) powder was employed as an activating flux, and weldments with four flux concentrations were examined. The microstructure w:::::as char:::::acterized using optical microscopy and scanning electron microscopy. The results revealed that flux concentration had a significant influence on penetration depth, with a concentration of 1 g/mL producing the maximum effect. At this concentration, weld penetration increased by 68% and weld pool volume by 63%, while the heat-affected zone width decreased by 12%. Arc imaging and quantitative/qualitative analysis demonstrated a constricted and focused plasma arc column in the presence of TiO₂ flux. Microstructural examinations further revealed suppression of columnar dendrite growth. It was found that TiO₂ flux enhances weld penetration and pool volume by constricting the arc and activating a reversed Marangoni flow, while simultaneously reducing HAZ width. However, the increased weld pool volume also intensified contraction stresses, leading to liquation cracking in the weld with the largest pool volume.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb