Search published articles


Showing 2 results for Saboori

M. J. Bagban, M. Mosallaee Pour, H. Hajisafari, A. Babnejad, A. Saboori,
Volume 8, Issue 1 (Journal OF Welding Science and Technology 2022)
Abstract

In the present study, the microstructure and mechanical properties of the dissimilar joint of Inconel 625 (IN-625) superalloy to austenitic stainless steel AISI316L (SS-316L) via AWS-BNi3 interface layer and transient liquid phase (TLP) bonding process were evaluated and necessary conditions for creating an efficient joint were determined. TLP bonding was performed in temperature and time range of 1050-1150ºC and 5-20min, respectively, under the protection of argon shielding gas with a purity of 99.9995%. Microstructural (OM and SEM) and phase (XRD) studies revealed that bonding at 1150 ° C for 20 min results in completion of isothermal solidification and develops a uniform gamma (γ) phase at the bonding zone. Cooling the samples before completion of isothermal solidification results in the formation of chromium and molybdenum-rich eutectic compounds at the bonding centerline. The continuous morphology of the eutectic compounds caused a sharp drop in the shear strength of the specimens (~50% reduction of shear strength). The inter-diffusion of alloying elements between the bonding area and the surrounding base metal results in the formation of chromium carbide in the IN-625 and chromium- boron compounds in the SS-316L, which increased the microhardness of these areas compared to the base metals and the bonding zone.
 

M. H. Saebi, A. H. Emami Ghalehghasemi, M. Atapour, A. Saboori,
Volume 11, Issue 2 (Journal OF Welding Science and Technology 2025)
Abstract

The Ti-6242 alloy is of particular significance in additive manufacturing due to its high thermal resistance. However, components fabricated from this alloy using the electron beam powder bed fusion (EB-PBF) process often exhibit poor surface quality, primarily resulting from the layer-by-layer fabrication nature and and the presence of partially melted powder particles. In this study, laser polishing was employed to enhance the surface characteristics of EB-PBF fabricated Ti-6242 specimens using three laser powers (195, 260, and 325 W) and two scanning speeds (4.5 and 3 mm/s). The effects of these parameters on surface roughness, microstructure, and mechanical properties were evaluated through surface profilometry, metallography, hardness, and wear tests. The results indicated that the average surface roughness decreased by up to 93%, from 9.36 µm to 0.61 µm. Moreover, the initial α and β phases transformed into a fine, martensitic α′ phase within the polished layer, leading to a 33% increase in hardness—from 380 to 506 HV—and a significant improvement in wear resistance. Consequently, optimal adjustment of laser polishing parameters can simultaneously reduce surface roughness and enhance the mechanical performance of Ti-6242 components.


Page 1 from 1     

© 2026 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb