Search published articles


Showing 2 results for Shirvani

Mr E. Ganjeh, Dr Ali Kaflou, Dr Kourosh Shirvani,
Volume 9, Issue 2 (Journal OF Welding Science and Technology 2024)
Abstract

In this study, mechanical properties of the transient liquid phase (TLP) bonds between Hastelloy X to Ni3Al IMC at temperature range of 800 - 900 °C were investigated. The microstructure of the joints was examined by optical and scanning electron microscopy. Also, high temperature XRD (HTXRD) analysis was utilized to investigate the phase changes at different temperatures of half-joints. According to microscopic observations, the joint cross-section consisted of three regions including diffusion affected zone (DAZ), isothermal solidification zone (ISZ), and Athermal solidification zone (ASZ), which increasing temperature and time result in ISZ consisting of nickel-rich solid solution developed across the microstructure. The optimum joint bonding strength was achieved for the sample treated at 1100 °C – 180 min equal to 355 ± 4.5 MPa. The ultimate tensile strength reached 36.5 ± 1 and 20.5 ± 1 MPa at temperatures of 800 °C and 900 °C, respectively. Fracture occurred on the side of the IMC substrates at both test temperatures due to the presence of shrinkage porosity during the solidification stage of IMC and crystal lattice parameters mismatch with the matrix.

A. Amirkhani, B. Beidokhti, K. Shirvani,
Volume 11, Issue 2 (Journal OF Welding Science and Technology 2025)
Abstract

In this study, a novel two-step heating strategy was investigated for transient liquid-phase (TLP) bonding of the IN-738LC superalloy. The bonding process consisted of an initial heating at 1150 °C for 5 seconds, followed by holding at 1110–1130 °C for 3 to 40 minutes. The microstructural evolution during the process, as well as the interface morphology, was characterized and compared with conventional TLP joints. This approach significantly reduced the time required to complete isothermal solidification; the width of the central eutectic zone decreased from 45 µm at 3 minutes to 19 µm at 12 minutes, and the eutectic zone was completely eliminated after 40 minutes. Microstructural examinations revealed that the initial step of the two-step heating process produced a cellular–dendritic solidification interface, leading to a non-uniform distribution of porosity along the bond region. Subsequent homogenization removed boride precipitates and resulted in the formation of uniformly distributed γ′ precipitates similar to those in the base metal. These findings provide practical and microstructural insights into the influence of thermal profiles on interfacial evolution and offer a pathway for improving joint quality in nickel-based superalloys.


Page 1 from 1     

© 2026 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb