Showing 66 results for Microstructure
M. Karimi Dizaj Cheragh, M. Sajed, M. A. Saeimi Sadigh, A. Abyazi, A. Heidarzadeh,
Volume 11, Issue 2 (12-2025)
Abstract
This study experimentally investigates the repair of surface grooves on pure magnesium samples using the surface friction stir processing (SFSP). Grooves with depths of 0.5, 1, and 1.5 mm were created and subsequently repaired under constant parameters of 1400 rpm rotational speed and 40 mm/min travel speed. The results revealed that the stir zone (SZ) exhibited fine equiaxed grains due to complete dynamic recrystallization, leading to significant improvements in tensile strength and hardness compared to the base metal. The highest ultimate tensile strength of 66.1 MPa and hardness of 60 HV were achieved in the 1 mm groove sample. Additionally, partial dynamic recrystallization was observed in the thermo-mechanically affected zone (TMAZ), and complete elimination of grooves was confirmed in all samples. These findings demonstrate that the SFSP is highly effective for localized repair and enhancement of mechanical properties in magnesium components, offering a promising solution to extend the service life of damaged magnesium parts.
M. Ilanlou, R. Shoja Razavi, P. Pirali, M.r. Borhani,
Volume 11, Issue 2 (12-2025)
Abstract
In this study, laser direct deposition was employed to fabricate a functionally graded transition between 17‑4PH stainless steel and Stellite 6. Specimens were designed and produced such that the chemical composition varied incrementally from 100% 17‑4PH to 100% Stellite 6, with each step involving a 25% decrease in the 17‑4PH content and a corresponding 25 % increase in Stellite 6. Microstructural evolution and elemental distribution were characterized by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), while mechanical properties were assessed via Vickers microhardness testing and uniaxial tensile tests. The microstructural analysis revealed a needle‑like martensitic matrix in the substrate, which transformed into cellular dendrites upon reaching the 25% Stellite 6 layer. As the Stellite 6 fraction increased, along with corresponding rises in Cr and W content, grain boundaries broadened and carbides accumulated within interdendritic regions. At the 50% composition, oriented columnar dendrites became prominent, and at higher Stellite 6 levels the dendritic structure refined further, ultimately evolving into an equiaxed morphology. Microhardness measurements showed a continuous increase from approximately 300 HV in the 17‑4PH substrate to 490 HV in the pure Stellite 6 layer. Tensile testing demonstrated that both yield strength (σᵧ) and ultimate tensile strength (σᵤ) remained within 1102–1159 MPa across all compositions, with no evidence of brittle phases or manufacturing defects. Elongation increased from 7% in pure Stellite 6 to 19% in pure 17‑4PH, with the 50%–50% gradient exhibiting an optimal balance of strength and ductility (14.5% elongation).
A. Adelian, Kh. Ranjbar, M. Reihanian, R. Dehmolaei,
Volume 11, Issue 2 (12-2025)
Abstract
This study investigated the effects of pulsed current and constant current on the microstructure and mechanical properties of Hastelloy X superalloy welds produced by Gas Tungsten Arc Welding (GTAW), using ERNiCrMo-2 filler metal. Key microstructural parameters, such as elemental segregation, dendrite refinement, and weld metal uniformity, along with changes in weld strength and hardness, were examined and compared between the two welding modes. Microstructural evaluations were conducted using optical microscopy, Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD) for phase identification. Pulsed current welding resulted in a finer microstructure with more equiaxed dendrites, reduced elemental segregation, and a more uniform distribution of M₆C carbides. Furthermore, this process led to significant improvements in hardness, impact toughness, and tensile strength of the weld metal compared to constant current welding. Fracture analysis confirmed ductile fracture behavior in all specimens, consistent with the microstructural and mechanical findings. The results of this research highlight the importance of using pulsed current in GTAW as an effective method for controlling the microstructure and enhancing the mechanical properties of Hastelloy X alloy joints.
M. Ansari Lale, M.n. Yoozbashi, M. Zadshakoyan, A. Almasi,
Volume 11, Issue 2 (12-2025)
Abstract
The friction stir spot welding (FSSW) process is a solid-state welding technique recognized as one of the most significant advancements in metal joining over the past decade. In this study, the effects of rotational speed and tool contact time, with a unique design different from previous research, on the microstructure and mechanical properties of 5754 series aluminum alloy were investigated. The workpiece was clamped using a specialized fixture on a radial drilling machine, and welding operations were performed using a FSSW machine at different rotational speeds and various tool contact times. Subsequently, the microstructure, microhardness, and tensile-shear strength of the welded spot region were evaluated. The results showed that increasing the tool rotational speed and prolonging the tool contact time led to an improvement of approximately 105% in the tensile-shear strength. According to statistical analyses, the factors of rotational speed and tool contact time significantly affected the shear strength with a confidence level greater than 95%; however, statistical analyses revealed different results regarding the relationship between rotational speed, contact time, and hardness.
M. H. Saebi, A. H. Emami Ghalehghasemi, M. Atapour, A. Saboori,
Volume 11, Issue 2 (12-2025)
Abstract
The Ti-6242 alloy is of particular significance in additive manufacturing due to its high thermal resistance. However, components fabricated from this alloy using the electron beam powder bed fusion (EB-PBF) process often exhibit poor surface quality, primarily resulting from the layer-by-layer fabrication nature and and the presence of partially melted powder particles. In this study, laser polishing was employed to enhance the surface characteristics of EB-PBF fabricated Ti-6242 specimens using three laser powers (195, 260, and 325 W) and two scanning speeds (4.5 and 3 mm/s). The effects of these parameters on surface roughness, microstructure, and mechanical properties were evaluated through surface profilometry, metallography, hardness, and wear tests. The results indicated that the average surface roughness decreased by up to 93%, from 9.36 µm to 0.61 µm. Moreover, the initial α and β phases transformed into a fine, martensitic α′ phase within the polished layer, leading to a 33% increase in hardness—from 380 to 506 HV—and a significant improvement in wear resistance. Consequently, optimal adjustment of laser polishing parameters can simultaneously reduce surface roughness and enhance the mechanical performance of Ti-6242 components.
A. Amirkhani, B. Beidokhti, K. Shirvani,
Volume 11, Issue 2 (12-2025)
Abstract
In this study, a novel two-step heating strategy was investigated for transient liquid-phase (TLP) bonding of the IN-738LC superalloy. The bonding process consisted of an initial heating at 1150 °C for 5 seconds, followed by holding at 1110–1130 °C for 3 to 40 minutes. The microstructural evolution during the process, as well as the interface morphology, was characterized and compared with conventional TLP joints. This approach significantly reduced the time required to complete isothermal solidification; the width of the central eutectic zone decreased from 45 µm at 3 minutes to 19 µm at 12 minutes, and the eutectic zone was completely eliminated after 40 minutes. Microstructural examinations revealed that the initial step of the two-step heating process produced a cellular–dendritic solidification interface, leading to a non-uniform distribution of porosity along the bond region. Subsequent homogenization removed boride precipitates and resulted in the formation of uniformly distributed γ′ precipitates similar to those in the base metal. These findings provide practical and microstructural insights into the influence of thermal profiles on interfacial evolution and offer a pathway for improving joint quality in nickel-based superalloys.