Showing 138 results for Welding
A. Adelian, Kh. Ranjbar, M.r. Tavakoli Shoushtari,
Volume 10, Issue 1 (6-2024)
Abstract
This research studied the effect of two-stage over aging treatment on the pitting corrosion behavior and microstructure of the weld metals in the 17-4 precipitation hardening stainless steel. For this purpose, this steel was subjected to solution annealing heat treatment at 1035°C for one hour before welding. Then gas tungsten arc welding (GTAW) was performed using ER630 similar filler metal. Subsequently, a section of the weldment was subjected to two-stage over aging treatment. The microstructure and corrosion resistance of the weld zone after the two-stage over aging treatment were investigated and compared with the weld zone behavior in the as-weld condition. Microstructural studies showed that the two-stage over aging treatment of the weld zone led to the tempering of the martensitic, the formation of more reversed austenite, and the formation of α-ferrite. The volume fraction of austenite in the as-weld condition was approximately %7 and increased to about %30 after two-stage over aging treatment, a four-fold increase. The pitting potential (EPit) of weld metal was -18.15 mv in the as-weld condition and reached 122.54 mv after two-stage over aging treatment, which also signifies an improvement in pitting resistance. The two-stage over aging treatment also reduced the potential differences between the different parts of welding zones reducing the galvanic corrosion occurrence. The assessment of mechanical properties through impact test revealed that impact resistance after
two-stage over aging treatment can be increased by about %66 compared to as-weld condition.
A. Khorram, H. Habibi, A. Yazdipour ,
Volume 10, Issue 1 (6-2024)
Abstract
This study aimed to investigate the effect of diffusion welding parameters on the microstructural characteristics and mechanical properties of the dissimilar joint between AISI 418 stainless steel and Inconel 738 superalloy using Ni interlayer with a thickness of 50 µm. The experiments were performed in a vacuum furnace at three temperatures of 1000, 1050 and 1150 °C for 45, 60, 75 and 90 min under the pressure of 5 MPa.The results show that voids and non-bonded areas are seen in the samples that were bonded at a lower temperature (1000 °C). By increasing the joining temperature from 1000 °C to 1050 °C, all micro discontinuities have disappeared, which shows that the microplastic deformation of roughness has improved. Then, by increasing the temperature to 1150 °C,non-bonded areas are observed in the joint due to the reduction of pressure on the contact surfaces. When pure nickel is used as an interlayer, intermetallic compounds of
γ' [Ni3(Al, Ti)] are formed in the γ matrix phase on the side of Inconel 738 superalloy while compounds of FeNi3 and γ (γFe, Ni) are formed on the side of AISI 418 stainless steel. According to the results of line scan analysis, the slope and penetration of elements in Inconel 738 superalloy is lower than AISI 418 stainless steel , which indicates less penetration in Inconel 738 superalloy. In the sample welded at the temperature of 1050 °C and the time of 90 Min, the penetration value of the nickel interlayer in AISI 418 stainless steel and Inconel 738 superalloy was 40 µm and 35 µm, respectively. By comparing the maximum hardness, it can be concluded that the joint at the temperature of 1050 °C and the time of 90 Min has a lower maximum hardness than other samples. Therefore, it has better joint characteristics than other samples in terms of intermetallic compounds. The highest value of shear strength was obtained at the temperature of 1050 °C and the time of 90 Min, which is equal to 270 MPa.
R. Abbasi, S. A.a. Akbari Mousavi, Y. Vahidshad,
Volume 10, Issue 1 (6-2024)
Abstract
The present study focuses on optimizing the mechanical properties and microstructure of laser welding in Haynes 25 (L-605) cobalt-based superalloy. Initially, the influence of laser welding variables such as laser power, pulse frequency, welding speed, and pulse width on the mechanical and metallurgical properties of the weld joints is investigated. By examining the welding variables, the values of G (thermal gradient) and R (cooling rate) are calculated, and their ratio (G/R) and cooling rate (G×R), which predominantly affect the solidification microstructure, are determined. The structural correlation with the mechanical properties resulting from welding is examined. In this research, it is considered to obtain the welding variables to create a high percentage of the structure in the form of equiaxed dendrite. Microstructural analysis reveals the growth of equiaxed grains and dendritic structures in the weld zone. The high cooling rate in the weld pool leads to dendritic solidification starting from columnar dendrites at the weld walls and ending in equiaxed dendrites at the center of the weld. The microhardness value in the weld zone is HV 328, which is very close to the microhardness of the base material. The tensile strength of the weld samples reaches about 93% to 94% of the base metal tensile strength. Tensile testing of the weld samples indicates a ductile-brittle fracture. Examination of the scanning electron microscope confirms the presence of dimples, intergranular cracks, and microvoids in the fracture zone.
Gh. Khalaj, J. Khalaj, F. Soleymani,
Volume 10, Issue 1 (6-2024)
Abstract
In this study, the microstructure of the joint interface in three-layer explosive welding of austenitic stainless steel 321 - aluminum 1050 - aluminum 5083 was examined before and after heat treatment. The welded samples were subjected to heat treatment at temperatures of 250°C and 350°C for durations of 1000, 3000, and 10000 seconds. Microstructural analysis was performed using optical microscopy and scanning electron microscopy. The results revealed that under all conditions, the Joint Interface of aluminum 5083 - aluminum 1050 exhibited a flat and defect-free structure. With increasing standoff distance, the Joint Interface of stainless steel 321 - aluminum 1050 transitioned from a smooth to a wavy pattern, and the average layer thickness increased from 4.95 μm to 6.7 μm. During heat treatment, the layer thickness in the Joint Interface increased proportionally to the diffusion kinetics, reaching maximum values of 18.56 μm and 15.02 μm for samples with standoff distances of 6.75 mm and 6 mm, respectively. The activation energies for diffusion were calculated as 46.6 kJ/mol and 42.4 kJ/mol, and the diffusion constants were 142.2 ms-1 and 45.3 ms-1 for the same samples.
Dr. M. Movahedi, H. Shirovi Khoozani, A. Ozlati,
Volume 10, Issue 2 (12-2024)
Abstract
In this research, the influence of friction stir welding parameters (tool traverse speed ranging from 50 to 150 mm/min, and tool rotational speed ranging from 300 to 1100 rpm) was investigated on the microstructure and mechanical properties of AA5052 aluminum/PP-Z30S polypropylene joint. Results showed that joint formation was accompanied by the formation of mechanical locks in the shape of anchor-like aluminum pieces. Decreasing the heat input (either by increasing the tool traverse speed or decreasing the tool rotational speed) resulted in the formation of larger anchors. The results of tensile-shear test showed that increasing the tool traverse speed from 50 to 100 mm/min led to an enhancement in the fracture load (by ~10%), while at higher traverse speeds, the fracture load decreased (from 235 to 181 N) due to the formation of defects and voids at the joint interface. An increase in the tool rotational speed from 300 to 900 rpm resulted in a superior fracture load (by 70%) due to the formation of anchors perpendicular to the polymer surface with greater penetration depth.
A. Heidarzadeh, R. Khajeh, M. Sajed,
Volume 10, Issue 2 (12-2024)
Abstract
In this research, the effect of nickel powder as an interlayer and the tool penetration depth on the microstructure and mechanical properties of lap joints between aluminum 1050 (top sheet) and pure copper (bottom sheet), both with a thickness of 2 mm, was investigated. Nickel powder was added through a machined groove with a width and depth of 1 mm at the base of the aluminum sheet. Friction stir lap welding was performed using a hot work steel tool with a shoulder diameter of 16 mm, a pin diameter of 4 mm, a pin height of 2.1 mm, a rotational speed of 950 rpm, a feed rate of 85 mm/min, a tool tilt angle of 2°, and varying tool penetration depths of 0, 0.05, and 0.1 mm. The results revealed that in the sample with a 0 mm penetration depth, due to insufficient heat generation, defects such as tunnel voids were formed. Increasing the penetration depth to 0.05 mm resulted in the formation of uniform and thin intermetallic layers, including Al3Ni2, Al7Cu4Ni, and Cu3.8Ni at the interface, which enhanced joint quality and increased tensile strength to 185.2 MPa with a fracture strain of 8.7%. In the sample with a 0.1 mm penetration depth, thicker and less uniform intermetallic layers were formed, which, despite locally increasing hardness, led to a decrease in tensile strength and fracture strain to 136.6 MPa and 6.7%, respectively. This study demonstrates that under the conditions of this research, a tool penetration depth of 0.05 mm provides the optimal conditions for FSLW of aluminum-copper alloys using nickel powder.
H. Abedi Chermahini, M. Piran, A. Esmaeili Chamgordani, M. Atapoor,
Volume 10, Issue 2 (12-2024)
Abstract
In this research, the mechanical and microstructural properties of AISI 316L sheets welded by RSW method using copper interlayer were investigated. In this regard, two types of connections were made, one without the use of an interlayer and the other with the use of a copper interlayer in different currents. In order to choose the optimal current for both types of connections, tensile tests were first performed, and microstructural, microhardness, elemental evaluation and failure mode tests were conducted on the selected samples. According to the obtained results, by increasing the electric current, the heat input in the welding pool is sufficiently high and the microstructural and mechanical properties of the welding zone were improved(Conversion of coarse grain to fine grain). Also, due to the optimality of the electric current in both samples with and without the interface layer, both samples had environmental failure, which indicates the high strength of the interface and their welding point. Changes in the chemical composition in different welding zones were insignificant and the distribution of elements was uniform in all zones. Also, the hardness changes from the base metal to the center of the welding zone were in the order of welding zone > base metal > heat-affected zone, which was consistent with the results obtained from the microstructural investigations. According to the results obtained for both cases with and without the use of an interface layer, the resistance spot welding method showed a successful connection for both types of cases.
Kh. Ranjbar, A. Firoozi, F. Shahriari Nogoorani, S. F. Ziaee,
Volume 10, Issue 2 (12-2024)
Abstract
Plain carbon steels are widely utilized in various industrial applications primarily due to their low cost. However, these steels often fall short in terms of mechanical properties and wear resistance. The deposition of hard and wear-resistant coatings on these steels significantly enhances their performance and extends their range of applications. Colomonoy 6, is a nickel-based superalloy, enhance hardness, erosion resistance, wear resistance, and corrosion resistance on the applied surfaces. The study investigated the application of weld overlay using colomonoy 6 on a plain carbon steel, aimed to create a hard and wear-resistant surface. The overlaying processes were performed using plasma transfer arc welding and gas tungsten arc welding under identical conditions. Microstructural characteristics were examined through optical and electron microscopy, and Phase analysis was performed using X-ray diffraction technique. The wear behavior of the weld overlays was evaluated using pin-on-disc wear testing at three different temperatures: 25 °C, 300 °C, and 600 °C, using an alumina pin. The microstructural investigation revealed the formation of dendritic nickel-rich solid solutions and interdendritic carbide and boride phases within the overlays, contributing to improved hardness and wear properties. Results demonstrated that in both overlaying methods, the wear mechanism at room temperature was mild abrasive, whereas at 600 °C, it was plastic deformation, exhibiting a wear track depth of approximately 33-35 μm, and 50-55 μm, respectively. In both overlayed metals, an approximate Vickers hardness number of 600 was measured a 4-fold increase in hardness of substrate. This finding suggests that factors other than hardness, such as microstructural stability and phase distribution at elevated temperatures, play significant roles in wear performance.
H.g. Tehrani-Moghadam, H.r. Jafarian, M. Aghazadeh Ghomi, A. Heidarzadeh,
Volume 11, Issue 1 (7-2025)
Abstract
In this study, the effect of friction stir welding on the microstructure and mechanical properties of Fe-24Ni-4Cr austenitic steel was investigated. For this purpose, a sheet with a thickness of 1 mm was subjected to friction stir welding using a WC-5%Co tool at a traverse speed of 100 mm/min and a tool rotational speed of 450 rpm. Electron backscatter diffraction (EBSD) analysis revealed that this process led to grain refinement and an increase in high-angle grain boundaries in the stir zone, attributed to dynamic recrystallization during welding. Phase maps indicated an increase in the BCC phase fraction in the stir zone compared to the base metal. Given the high strain rate and the presence of stabilizing elements, this phase was primarily strain-induced martensite. Mechanical property assessments showed a significant increase in the tensile strength of the stir zone (450 MPa) compared to the base metal (350 MPa). Moreover, the yield strength of the stir zone (388 MPa) was substantially higher than that of the base metal (145 MPa), which can be attributed to grain refinement, an increase in high-angle grain boundaries, a higher dislocation density, and martensite formation. However, the ductility of the stir zone decreased due to higher stress concentration and dislocation density in this region. These findings suggest that friction stir welding can be an effective method for enhancing the strength and hardness of austenitic steels, but process conditions must be carefully controlled to prevent reductions in toughness and ductility.
S. Sajjadi Nikoo, F. Qods, M. Yousefieh,
Volume 11, Issue 1 (7-2025)
Abstract
In this research, the ultrafine-grained (UFG) composite of AA2024 and AA5083 aluminum alloys was made by accumulative roll bonding (ARB) process and butt-welded by friction stir welding. Friction stir welding (FSW) is the best method for the joining of UFG strips. Microstructural investigations were performed by optical microscope and transmission electron microscope in the stir zone (SZ), thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ). The fine recrystallized structure with a grain size of about 900 nm was determined in the weldment. Due to the strengthening mechanisms of grain boundaries, nano-meter size precipitates and solid solution strengthening, the high strength of about 403 MPa was achieved. The presence of precipitates with homogeneous distribution in FSWed strips caused a high ductility of about 14% compared to the fabricated composite strips (6.9%). The high hardness of the SZ was caused by the formation of new equiaxed grains and fine precipitates, and also the decrease in the hardness of the HAZ was due to the dissolution and coarsening of T-phase precipitates.
F. Bashirzadeh, T. Saeid,
Volume 11, Issue 1 (7-2025)
Abstract
Unlike conventional welding methods, joining titanium alloys to steels using ultrasonic welding does not result in the formation of brittle intermetallic compounds and high torsion, causing a reduction in the mechanical properties of the joint. Ultrasonic welding of the St12-CP.Ti samples was performed at constant parameters of 7 bars, 2 s and 1 kW and variable parameter of interlayer material (Cu, 70B and Zn). The investigation of samples by OM, SEM, shear-tensile and microhardness tests revealed that Zn and Cu samples had the lowest and highest bond densities, with 42.2 and 80.6 percent, respectively. The bond density and the strength of the sample with greater interlayer deformability have higher values. Due to the high plastic deformation capability of copper, the Cu sample has generated more heat and deformation at the joint interface than in the other samples. As a result, the microstructure underwent recrystallization and grain growth after enduring severe plastic deformation. Also, the highest hardness of the steel side equal to
201 HV was for the Cu sample, followed by 70B and Zn, respectively.
Seyed S. A Hosseini, S. A. A. Akbari Mousavi,
Volume 11, Issue 1 (7-2025)
Abstract
In this study, 1 mm thick austenitic stainless steel 316L sheets were used for experimental testing. The experimental welding process was carried out using a Nd:YAG pulsed laser welding machine, and the welding simulation was performed using the SYSWELD software with a three-dimensional model for thermodynamic and mechanical analysis. The simulation results showed over 90% correlation with the experimental results. Analysis of experimental and numerical data revealed that at a constant voltage of 440 volts, decreasing the welding speed from 2 to 0.5 mm/s increased the overlap rate of pulses from 67% to 93% and the maximum average power density (EPPD) from 5963 to 21831 W/mm². Additionally, increasing the voltage from 440 to 480 volts at a constant speed of 1 mm/s raised the heat input from 114 to 138 J/mm and the weld depth from 0.56 to 0.66 mm. Due to the high cooling rate, the grain size of the weld metal became finer than the base metal (63% reduction in grain size). Two phases, austenite and ferrite, were observed in the weld metal, and the solidification mode was predicted to be FA.With an increase in welding speed from 0.5 mm/s to 2 mm/s at a constant voltage of 440 volts, the maximum tensile residual stress increased from 96 to 260 MPa due to reduced pulse overlap (from 93% to 67%), uneven heat distribution in the part, and the generation of thermal stresses. Furthermore, increasing the welding voltage from 440 to 480 volts at a constant speed of 1 mm/s caused the maximum tensile residual stress to rise from 124 to 152 MPa. The maximum hardness of the weld metal increased from 180 to 215 Vickers as the welding speed rose due to the prevention of carbon diffusion and an increased growth rate. However, with an increase in welding voltage and heat input (from 57 to 69 J/mm), the hardness decreased from 225 to 215 Vickers due to a reduction in thermal gradients and grain growth.
A. Bahmani, R. Ashiri,
Volume 11, Issue 1 (7-2025)
Abstract
This research looks at how microstructure and mechanical properties change in resistance spot welds of QP980 advanced high-strength steel. It specifically focuses on the effects of zinc coating and how it influences weld nugget formation, mechanical properties, and fracture behavior. The study involved microscopic examinations, mechanical tests, and finite element simulations to determine the thermal history of different weld zones. A key finding was that rapid cooling during the welding process led to the formation of, metastable phases, such as martensite, in both the weld nugget and the heat-affected zone. A finite element model of the welding process was used to simulate heat distribution and analyze the microstructure in various weld regions. This model showed that reaching the peak temperature during four-pulse resistance spot welding is delayed. This delay, along with proper hold times, helps prevent the formation of voids. The simulated thermal history and the rapid heating/cooling conditions effectively predicted the evolution and transformation of the microstructure in different weld areas. It was found that the presence of a zinc coating, and the resulting reduction in electrical contact resistance, delayed the formation of the weld nugget at lower welding currents. However, at higher currents, the primary source of heat generation shifted from contact resistance to bulk resistance within the steel sheet. This led to larger weld nuggets in coated samples compared to uncoated ones. While uncoated samples showed higher weld nugget hardness (512 Vickers) and greater tensile-shear strength (with a maximum load-bearing capacity of 28.1 kN in uncoated samples versus 24 kN in coated samples), coated samples were able to achieve the critical weld nugget size for a change in fracture mode at lower welding currents (9 kA compared to 9.5 kA).
M. Farbakhti, S. R. Elmi Hosseini, S. A. Mousavi Mohammadi,
Volume 11, Issue 1 (7-2025)
Abstract
This study investigated the influence of resistance spot welding current intensity on the formation of liquid metal embrittlement (LME) cracks in galvanized advanced QP1180 steel. Galvanized steel sheets with a thickness of 1 mm were welded at currents of 6.5, 7, 7.5, and 8 kA. The results revealed that increasing the current significantly enlarged the weld nugget size, molten volume, electrode indentation, and the likelihood of LME crack formation. Microstructural analysis, elemental distribution, and crack characterization were conducted using optical and electron microscopy. The findings indicated that the weld zone microstructure primarily consisted of martensite, while the non-uniform distribution of zinc along grain boundaries facilitated the initiation and propagation of LME cracks. Cracks were predominantly observed at the periphery of the weld pool indentation and in the electrode-sheet contact area. This study demonstrates that controlling welding current intensity is a key factor in mitigating LME and improving the mechanical properties of joints in galvanized QP1180 steel. Optimizing welding parameters, particularly limiting current intensity, can prevent molten metal-induced cracking and enhance the durability and safety of automotive structures. Hardness profiling revealed peak hardness in the weld zone, followed by a gradual decrease toward the heat-affected zone (HAZ).
A. Adelian, Kh. Ranjbar, M. Reihanian, R. Dehmolaei,
Volume 11, Issue 2 (12-2025)
Abstract
This study investigated the effects of pulsed current and constant current on the microstructure and mechanical properties of Hastelloy X superalloy welds produced by Gas Tungsten Arc Welding (GTAW), using ERNiCrMo-2 filler metal. Key microstructural parameters, such as elemental segregation, dendrite refinement, and weld metal uniformity, along with changes in weld strength and hardness, were examined and compared between the two welding modes. Microstructural evaluations were conducted using optical microscopy, Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD) for phase identification. Pulsed current welding resulted in a finer microstructure with more equiaxed dendrites, reduced elemental segregation, and a more uniform distribution of M₆C carbides. Furthermore, this process led to significant improvements in hardness, impact toughness, and tensile strength of the weld metal compared to constant current welding. Fracture analysis confirmed ductile fracture behavior in all specimens, consistent with the microstructural and mechanical findings. The results of this research highlight the importance of using pulsed current in GTAW as an effective method for controlling the microstructure and enhancing the mechanical properties of Hastelloy X alloy joints.
M. Ansari Lale, M.n. Yoozbashi, M. Zadshakoyan, A. Almasi,
Volume 11, Issue 2 (12-2025)
Abstract
The friction stir spot welding (FSSW) process is a solid-state welding technique recognized as one of the most significant advancements in metal joining over the past decade. In this study, the effects of rotational speed and tool contact time, with a unique design different from previous research, on the microstructure and mechanical properties of 5754 series aluminum alloy were investigated. The workpiece was clamped using a specialized fixture on a radial drilling machine, and welding operations were performed using a FSSW machine at different rotational speeds and various tool contact times. Subsequently, the microstructure, microhardness, and tensile-shear strength of the welded spot region were evaluated. The results showed that increasing the tool rotational speed and prolonging the tool contact time led to an improvement of approximately 105% in the tensile-shear strength. According to statistical analyses, the factors of rotational speed and tool contact time significantly affected the shear strength with a confidence level greater than 95%; however, statistical analyses revealed different results regarding the relationship between rotational speed, contact time, and hardness.
R. Dadashpour, M. Sajed, M. A. Saeimi Sadigh, A. Abyazi, A. Heidarzadeh,
Volume 11, Issue 2 (12-2025)
Abstract
In this study, the Friction Stir Welding process was employed to repair artificial cracks and grooves in 7075 aluminum alloy. Samples with different groove depths (0.5, 1, 1.5, and 2 mm) were prepared and evaluated through experimental tests, metallographic analysis, tensile testing, and numerical simulation using Abaqus software. The results showed that the Friction Stir Welding successfully repaired the defects without creating voids or surface irregularities. Microstructural observations in the stir zone revealed that dynamic recrystallization led to the formation of fine and homogeneous grains, resulting in improved hardness and tensile strength. The specimen with a 1 mm groove depth exhibited the best mechanical performance, with a maximum hardness of approximately 109 HV and the highest tensile strength among all samples. Conversely, samples with 0.5 and 2 mm groove depths showed void formation and reduced strength due to insufficient or excessive heat input and uneven material flow. Both experimental and simulation results confirmed that a groove depth of 1 mm provides optimal conditions for defect repair in 7075 aluminum alloy.
A. H. Jafarzadeh, M. S. Shahriari, R. Ashiri,
Volume 11, Issue 2 (12-2025)
Abstract
Repair welding of nickel-based superalloy Inconel 939, which was under working conditions of 100,000 hours, was performed by gas tungsten arc welding using Inconel 617 filler metal. The main objective of this study is to investigate and analyze the challenges during welding such as irregular distribution of primary MC carbides and crack formation in the heat-affected zone, and also to investigate the effect of post-welding heat treatment cycle on the microstructure and hardness of different weld zones. During welding, a crack of 91 micrometers length was observed in the heat affected zone, which due to the presence of a liquation film and accumulation of carbides around the crack, the crack was categorized as a liquation crack. Then, due to post-welding heat treatment, improvement of microstructural characteristics and hardness of the weld zone, partial melted zone, and heat-affected zone was observed, which resulted in homogenization of the hardness profile of the weld. It was observed that post-welding heat treatment caused the crack formed during welding to grow and spread to reach a length of 386 micrometers, which was classified as a strain-aging crack due to its formation and growth during post-welding heat treatment.