جستجو در مقالات منتشر شده


25 نتیجه برای ترک

خلیل رنجبر، علیرضا فیروزی، فرهاد شهریاری نوگورانی، سیده فاطمه ضیائی،
دوره 10، شماره 2 - ( 10-1403 )
چکیده

فولادهای ساده کربنی با توجه به ارزان بودن آن‌ها کاربردهای مختلفی در صنعت دارند ولی خواص مکانیکی و مقاومت سایشی مطلوبی ندارند. اعمال پوشش‌های سخت و مقاوم به سایش کارایی و حوضه کاربرد آن‌ها را افزایش می‌دهد. پوشش کلمونوی۶ (Colmonoy6) از جنس سوپر آلیاژهای پایه نیکل می‌باشد که باعث افزایش سختی و مقاومت در برابر سایش، فرسایش و خوردگی سطح می‌شود. هدف این پژوهش بررسی خواص سایشی روکش سخت و مقاوم به سایش کلمونوی۶ بر روی زیرلایه فولاد ساده کربنی می‌باشد. در این تحقیق روکش کلمونوی۶با استفاده از فرایند جوشکاری به دو روش قوس انتقالی پلاسما وقوس تنگستن و در شرایط یکسان انجام شد. خصوصیات ریزساختاری و رفتار سایشی نمونه‌ها در دماهای مختلف باهم مقایسه شدند. بررسی‌های ریزساختاری توسط میکروسکوپ‌های نوری و الکترونی، و آنالیزهای فازی توسط آنالیز پراش پرتو ایکس صورت گرفت. آزمون سایش پین بر روی دیسک در سه دمای ۲۵، ۳۰۰ و ۶۰۰ درجه سانتی‌گراد و با استفاده از پین سرامیکی آلومینایی انجام شد. بررسی‌های ریزساختاری روکش، تشکیل محلول جامد غنی از نیکل دندریتی، وترکیبات بورایدی و کاربیدی بین دندریتی در روکش‌ها که موجب افزایش سختی و بهبود مقاومت سایشی می‌شوند را تایید کردند. نتایج نشان داد که در هر دو روش روکش‌کاری، مکانیزم سایش در دمای اتاق از نوع سایش خراشان ملایم، در حالی‌که در دمای ۶۰۰ درجه، مکانیزم سایش از نوع تغییر شکل پلاستیکی است که بترتیب دارای عمق شیار سایشی در حدود ۳5-۳3 میکرون، و ۵5-۵0 میکرون می باشند. در هر دو روش، سختی روکش تقریبا عدد ۶۰۰ ویکرز را نشان داد که افزایش چند برابری نسبت به زیرلایه دارد. یافته‌های این پژوهش نشان می‌دهد که عواملی به غیر از سختی در تعیین رفتار سایشی نقش بازی می‌کنند که از آن جمله می‌توان به پایداری ریزساختاری و توزیع فازها در دمای بالا اشاره کرد.

علی رحیمی، مرتضی یزدی زاده، مسعود وطن آرا، مجید پورانوری،
دوره 11، شماره 1 - ( 4-1404 )
چکیده

ساخت افزایشی قوسی با سیم (WAAM) به دلیل نرخ بالای رسوب‌دهی، جایگاهی ویژه در تولید قطعات بزرگ فلزی دارد. استفاده از فولادهای زنگ‌نزن آستنیتی در این فرایند می‌تواند علاوه بر کاهش هزینه‌های تولید، آزادی بیشتری در طراحی قطعات فراهم کند. فولاد زنگ‌نزن 310، که به‌عنوان فولاد نسوز در صنعت شناخته می‌شود، به دلیل مقاومت بالا در برابر اکسیداسیون و دمای بالا، کاربرد گسترده‌ای دارد. با این حال، این فولاد به‌طور ویژه به ترک‌های گرم در حین فرایندهای جوشکاری و ساخت افزایشی حساس است. در این پژوهش، ریزساختار و خواص مکانیکی فولاد زنگ‌نزن 310 تولیدشده به روش WAAM با استفاده از فرایندهای انتقال سرد فلز (CMT) و جوشکاری قوسی فلزگازی (GMAW) مقایسه شد. نتایج نشان داد که فرایند CMT به دلیل حرارت ورودی پایین‌تر، می‌تواند حساسیت فولاد زنگ‌نزن 310 به ترک‌های گرم را به‌طور قابل‌توجهی کاهش دهد. این یافته‌ها اهمیت انتخاب مناسب فرایند برای تولید قطعات باکیفیت و کاهش عیوب ساختاری را نشان می‌دهد.

مجتبی فربختی، سید رضا علمی حسینی، سید علی موسوی محمدی،
دوره 11، شماره 1 - ( 4-1404 )
چکیده

در این تحقیق، اثر شدت جریان جوشکاری مقاومتی نقطه‌ای بر تشکیل ترک‌تردی فلز مذاب (LME)  در فولاد پیشرفته QP1180 گالوانیزه بررسی شد. ورق‌های فولادی گالوانیزه شده با ضخامت 1 میلی‌متر با جریان‌های6.5، 7، 7.5 و 8 کیلوآمپر جوشکاری شدند. نتایج نشان داد با افزایش شدت جریان، اندازه ناحیه جوش (ناگت)، حجم ذوب، فرورفتگی الکترود و در نتیجه احتمال شکل‌گیری ترک‌های LME به طور قابل توجهی افزایش یافت. بررسی ریزساختار، توزیع عناصر و ترک‌ها با استفاده از میکروسکوپ نوری و الکترونی انجام شد. نتایج نشان داد که ریزساختار ناحیه جوش عمدتاً مارتنزیتی بوده و توزیع غیریکنواخت عنصر روی در مرز دانه‌ها، آغاز و گسترش ترک‌های LME را تسهیل کرده است. ترک‌ها عمدتاً در لبه فرورفتگی حوضچه جوش و همچنین در ناحیه تماس الکترود با ورق مشاهده شدند. تشکیل این ترک‌ها در جریان‌های بیش از 7 کیلوآمپر باعث افت خواص مکانیکی شد. بطوری‌که با افزایش جریان از 5/6 به 7 کیلوآمپر بیشینۀ نیرو از 21/3 به 18/6 کیلونیوتن کاهش یافت. همچنین، جابجایی از 4/19 به 3/68 میلی‌متر رسید. نتایج این پژوهش نشان می‌دهد که کنترل شدت جریان جوشکاری عامل کلیدی در کاهش پدیده LME و بهبود خواص مکانیکی اتصال در فولادهای QP1180 گالوانیزه می‌باشد. بهینه‌سازی پارامترهای جوشکاری، به ویژه محدودسازی شدت جریان، می‌تواند به جلوگیری از بروز ترک‌های ناشی از مذاب و افزایش دوام و ایمنی سازه‌های خودرویی منجر گردد. پروفیل سختی نشان داد که بیش‌ترین مقدار سختی در ناحیه‌ جوش حاصل شد و پس از آن با فاصله گرفتن به سمت ناحیه تحت تأثیر حرارت سختی کاهش یافت.

رضا صحیحی، سید محمدعلی بوترابی، روح اله عشیری،
دوره 11، شماره 2 - ( 10-1404 )
چکیده

سوپرآلیاژ Inconel 738LC به‌دلیل استحکام ناشی از رسوبات گاما پرایم و حضور فازهای کم‌ذوب، در جوشکاری مستعد ترک‌های ذوبی در ناحیه متأثر از حرارت است و این موضوع قابلیت اطمینان اتصال را محدود می‌کند. در این پژوهش، اثر جریان در جوشکاری قوس تنگستن با گاز محافظ (GTAW) در دو حالت ثابت و پالسی بر جوش‌پذیری، ریزساختار و خواص مکانیکی این سوپر‌آلیاژ بررسی شد. برای ارزیابی جوش ها، آزمون کشش در دمای محیط و سختی‌سنجی ویکرز انجام شد و ریزساختار به‌کمک میکروسکوپ الکترونی و نوری مطالعه گردید. نتایج نشان داد پالسی‌کردن—به‌ویژه در فرکانس‌های بالاتر—با ایجاد نوسان حرارتی کنترل‌شده و کاهش ورودی حرارت مؤثر، وقوع ترک‌های ذوبی را به‌طور معناداری کاهش داده و کیفیت اتصال را بهبود می‌بخشد. این رویکرد با سوق‌دادن انجماد از دندریتی ستونی به هم‌محور، کاهش جدایش بین‌دندریتی و توزیع یکنواخت‌تر و ریزتر کاربیدهای MC، زمینه بهبود استحکام، شکل‌پذیری و سختی فلز جوش را فراهم می‌کند. در مجموع، GTAW پالسی روشی کارآمد برای مهار ترک‌خوردگی و ارتقای عملکرد اتصال در IN738LC است.

امیرحسین جعفرزاده، محمدسعید شهریاری، روح‌اله عشیری،
دوره 11، شماره 2 - ( 10-1404 )
چکیده

جوشکاری تعمیری سوپرآلیاژ پایه نیکل اینکونل‌939 که تحت شرایط کاری 100000 ساعت بود، به روش جوشکاری قوسی تنگستن-گاز با استفاده از فلز پرکن اینکونل‌617 انجام شد. هدف اصلی در این پژوهش بررسی و تحلیل چالش‌‌های موجود در حین جوشکاری مانند توزیع نامنظم کاربیدهای اولیه MC و تشکیل ترک در منطقه متاثر از حرارت، و همچنین بررسی اثر سیکل عملیات‌حرارتی پس از جوشکاری بر ریزساختار و سختی نواحی مختلف جوش می‌باشد. در حین جوشکاری ترک خوردگی در منطقه متاثر از حرارت به طول 91 میکرومتر مشاهده شد و با توجه به حضور یک لایه‌ ذوب شده و تجمع کاربیدها در اطراف ترک، ترک از نوع ترک ذوبی معرفی شد. سپس بر اثر عملیات‌حرارتی پس از جوشکاری، بهبود مشخصه‌های ریزساختاری و سختی در حوضچه‌ جوش، منطقه ذوب جزیی و منطقه متاثر از حرارت مشاهده شد که این امر موجب همگون شدن پروفیل سختی گردید. مشاهده گردید که عملیات‌حرارتی پس از جوشکاری باعث رشد و گسترش ترک‌ تشکیل شده در حین جوشکاری به طول 386 میکرومتر شد که این ترک به دلیل تشکیل و رشد در حین عملیات‌حرارتی پس از جوشکاری از نوع ترک پیر کرنشی معرفی شد.


صفحه 2 از 2    
2
بعدی
آخرین
 

کلیه حقوق این وب سایت متعلق به مجله علمی-پژوهشی علوم و فناوری جوشکاری ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2026 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb