Search published articles


Showing 183 results for Type of Study: Research

A. Bahmani, R. Ashiri,
Volume 11, Issue 1 (7-2025)
Abstract

This research looks at how microstructure and mechanical properties change in resistance spot welds of QP980 advanced high-strength steel. It specifically focuses on the effects of zinc coating and how it influences weld nugget formation, mechanical properties, and fracture behavior. The study involved microscopic examinations, mechanical tests, and finite element simulations to determine the thermal history of different weld zones. A key finding was that rapid cooling during the welding process led to the formation of, metastable phases, such as martensite, in both the weld nugget and the heat-affected zone. A finite element model of the welding process was used to simulate heat distribution and analyze the microstructure in various weld regions. This model showed that reaching the peak temperature during four-pulse resistance spot welding is delayed. This delay, along with proper hold times, helps prevent the formation of voids. The simulated thermal history and the rapid heating/cooling conditions effectively predicted the evolution and transformation of the microstructure in different weld areas. It was found that the presence of a zinc coating, and the resulting reduction in electrical contact resistance, delayed the formation of the weld nugget at lower welding currents. However, at higher currents, the primary source of heat generation shifted from contact resistance to bulk resistance within the steel sheet. This led to larger weld nuggets in coated samples compared to uncoated ones. While uncoated samples showed higher weld nugget hardness (512 Vickers) and greater tensile-shear strength (with a maximum load-bearing capacity of 28.1 kN in uncoated samples versus 24 kN in coated samples), coated samples were able to achieve the critical weld nugget size for a change in fracture mode at lower welding currents (9 kA compared to 9.5 kA).

 
M. Farbakhti, S. R. Elmi Hosseini, S. A. Mousavi Mohammadi,
Volume 11, Issue 1 (7-2025)
Abstract

This study investigated the influence of resistance spot welding current intensity on the formation of liquid metal embrittlement (LME) cracks in galvanized advanced QP1180 steel. Galvanized steel sheets with a thickness of 1 mm were welded at currents of 6.5, 7, 7.5, and 8 kA. The results revealed that increasing the current significantly enlarged the weld nugget size, molten volume, electrode indentation, and the likelihood of LME crack formation. Microstructural analysis, elemental distribution, and crack characterization were conducted using optical and electron microscopy. The findings indicated that the weld zone microstructure primarily consisted of martensite, while the non-uniform distribution of zinc along grain boundaries facilitated the initiation and propagation of LME cracks. Cracks were predominantly observed at the periphery of the weld pool indentation and in the electrode-sheet contact area. This study demonstrates that controlling welding current intensity is a key factor in mitigating LME and improving the mechanical properties of joints in galvanized QP1180 steel. Optimizing welding parameters, particularly limiting current intensity, can prevent molten metal-induced cracking and enhance the durability and safety of automotive structures. Hardness profiling revealed peak hardness in the weld zone, followed by a gradual decrease toward the heat-affected zone (HAZ).

S. Pourmorad Kaleybar, H. Khorsand,
Volume 11, Issue 1 (7-2025)
Abstract

This research focuses on the dissimilar joining of Ti6Al4V and Inconel 718 alloys using the Transient Liquid Phase (TLP) bonding process with a BNi2 foil and a copper interlayer. The objective is to analyze the effects of temperature (850, 950, and 1050 °C) and holding time (10, 20, and 30 minutes) on the microstructure, phase composition, and mechanical properties of the bonding region. DSC analysis indicated that melting reactions begin around 950 °C, attributed to the formation of eutectic compounds in the Cu-Ni-B system. SEM and EDS examinations confirmed the formation of intermetallic phases such as Ti₂Ni, NiTi, Cr₂Ti, and ceramic phase Ni₃B in different regions of the joint. Under optimal conditions (950 °C for 20 minutes), a uniform microstructure, controlled boron diffusion, and formation of stable phases were observed. The hardness in the DAZ region was approximately 420–450 HV. In contrast, higher temperatures and extended holding times led to the formation of brittle phases, solidification cracks, and interfacial discontinuities. The diffusion coefficient of titanium under optimal bonding conditions was estimated to be 2.8×10⁻¹¹ m²/s. These findings emphasize the importance of precise control over process parameters to achieve high-quality joints and prevent structural defects.



Page 10 from 10     

© 2025 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb